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Abstract

We review recent advances in the calculations of high-order convergent
expansions for quantum many-particle systems. Calculations for ground state
properties, including correlation functions and static susceptibilities, for spin
models as well as for models of many fermions, such as Hubbard and Kondo
models, are discussed. A historical perspective to the subject is provided. Recently
important technical advances have been made in perturbative calculations of the
excitation spectra of quantum many-particle systems, which enable the calculation
of these spectra to high orders. The method, along with its applications, are
explained. Fairly comprehensive, though simpli® ed, algorithms for generating lists
of relevant clusters, their lattice embeddings and subclusters are presented. The
perturbative recursion relations and their computer implementation are also
discussed in detail. A compilation is made of various series expansion studies that
have been carried out for condensed matter problems. The scope and limitations of
these methods are explained, and several open problems are noted.
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1. Introduction

Systems with strong electronic correlations, both idealized models and real
materials, have o� ered a wide variety of challenging and important problems in
condensed matter physics. The materials include (but are by no means limited to) the
cuprate high-temperature superconductors and their antiferromagnetic, insulating
parent compounds; the c̀olossal magnetoresistance’ manganates and related com-
pounds; heavy-fermion metals and `Kondo insulators’ ; and a host of magnetic
insulators such as uniformly frustrated antiferromagnets, spin ladders, and spin-
Peierls compounds. Some of these materials were only synthesized in the past decade
or so, while for others synthetic routes and structures had been determined but their
electronic properties had not been thoroughly explored until recently.

The theoretical models which are used to describe the low-energy electronic
properties of these materials are by no means new. Hubbard, Kondo, Anderson,
double-exchange, and Heisenberg± Ising models have been actively studied for
several decades. There has been a resurgence of interest in these models, however,
because of calculational techniquesÐ which have been either recently invented or
recently rendered more potent due to advances in computer technologyÐ that go
beyond traditional many-body methods for calculating ground- and excited-state
properties. One example of a venerable technique grown stronger is exact diag-
onalization of ® nite clusters, while methods of more recent vintage include
dynamical mean-® eld theory (`d ˆ 1 ’ methods) and the density-matrix renormaliza-
tion group.

The subject of this paper is the most venerable approach to the study of quantum
systems which are not exactly diagonalizable by elementary analytic means, namely,
non-degenerate Rayleigh± SchroÈ dinger perturbation theory. Our focus will be on
modern developments which allow for the e� cient generation of high-order
expansions, signi® cantly beyond the order of expansion that one can practically
carry out `by hand’ , for quantum many-body systems de® ned on in® nite lattices. We
will refer to the combination of non-degenerate perturbation theory (carried out
using modern techniques) and series extrapolation (mostly using techniques brought
to physics in the context of high-temperature expansions and classical critical
phenomena) as t̀he series expansion method’.

For certain problems, particularly for insulators of dimensionality greater than
one, we believe that the series expansion method is among the best calculational
methods available. These problems include various Heisenberg antiferromagnets (for
which series have been constructed about Ising, dimer, and plaquette models, as will
be described later), and half-® lled Hubbard and Kondo-lattice models. Methods
which compete with series expansions most directly are numerical ® nite-cluster
calculations such as exact diagonalization, quantum Monte Carlo, and density
matrix renormalization group, which must be supplemented by ® nite-size scaling
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to estimate quantities in the thermodynamic limit. One great advantage of the series
expansion method is that the associated computational di� culties increase relatively
slowly with dimensionality, in contrast with all of the ® nite-cluster methods. In
contrast to quantum Monte Carlo, but like exact diagonalization, there is never a
fermion sign problem. Another nice feature is that they are carried out directly for
in® nite systems: although numerical series extrapolations are required they are
distinct from those extrapolations involved in ® nite-size scaling. This suggests that
the inherent limitations of the series expansion method are perhaps di� erent from
and in some ways complimentary to those approaches based on non-perturbative
calculations for ® nite systems.

Before proceeding further, we would like to distinguish between more traditional
high-temperature expansions and T ˆ 0 perturbation expansions for quantum
many-body systems. In this paper we will discuss only the latter, even though these
methods share some common features such as the basic structure of the connected-
graph expansion and various technical details in practical implementation of the
calculations. It has also been the experience of the authors that applying both high-
temperature and T ˆ 0 perturbative methods to the same problem can be very
useful. However, the two classes of expansions are su� ciently di� erent in character
that they merit separate consideration. For reviews of high-temperature expansions
for quantum many-body systems we refer the reader to [1± 3].

The outline of the paper is as follows. First, in section 2 we address the question:
for what Hamiltonians and for what properties does the series expansion method
provide a feasible calculational scheme? Section 3 o� ers a brief history of the series
expansion method. The remainder of the article is independent of this section, but
readers may ® nd it useful as an entry point into the literature on methods for series
expansions and some of the earlier applications. The three sections that follow, 4, 5
and 6, are devoted to the formalisms underlying the construction of high-order
perturbation expansions: ® rst a very general discussion of cluster expansions, then
calculations of ground state properties including equal-time correlation functions
and static susceptibilities, and ® nally calculations of excitation spectra and spectral
weights. The next two sections, 7 and 8, are concerned with implementation details
associated with generating the clusters and evaluating the cluster weights (for both
ground-state and excited-state properties) . In section 9 various applications of the
series expansion method in the condensed-matter literature are described. Some
pointers to the ® eld-theory literature are also o� ered. For the particular case of
square-lattice Heisenberg antiferromagnets, a critical comparison of series expan-
sions with ®̀ nite-size’ and other numerical approaches to the same problems is
o� ered in section 10. The next section touches on some open technical issues:
multiple excitations (both bound states and continua) , quenched disorder, and
degenerate perturbation theory. A summary and conclusions are presented in
section 12.

2. Preliminaries

The series expansion method is suited for lattice-based quantum many-body
systems. That is, we consider models where the dynamical degrees of freedom, such
as spins, are represented by operators on lattice sites and their interactions are
speci® ed by a Hamiltonian of the form
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H ˆ
X

i

… T i ; Hi † ‡
X

i; j

… T i ; T j ; Ji; j † ; … 1†

where the T i are generic operators, the parentheses represent generic functions of
those operators, and the ®̀ elds’ Hi and c̀oupling constants’ Ji; j parametrize the
interactions. All cases treated to date have involved one-body and two-body terms,
just as in equation (1), but there is no problem in principle with including multi-body
terms in the Hamiltonian, if desired. We will point out in section 4 what
modi® cations in the formalism would be required to include such interactions. It
is a useful simpli® cationÐ but again not an essential one, as will be brie¯ y discussed
in section 11Ð to assume that the Hamiltonian is de® ned on a periodic lattice and
that the interactions are invariant with respect to the translation group of the lattice.
This implies that Hi is site-independent and Ji;j depends only on ri ¡ rj . A truly
essential assumption is that an `unperturbed Hamiltonian’ H 0 exists so that the
Hamiltonian of equation (1) is a member of the one-parameter family of
Hamiltonians

H ˆ H 0 ‡ ¶H 1; … 2†

where H 0 can be trivially diagonalized in a suitably chosen local basis. By the latter
we mean, speci® cally, that the eigenstates of H 0 can be expressed as a product over
states of single sites. We shall also assume that the ground state of H 0 is either non-
degenerate or of ® nite degeneracy. If these above conditions are met, then quite
generally it is possible to develop perturbation expansions for the ground state
energy and correlation functions of the model de® ned by equation (2) in powers of ¶

by means of a connected-cluster expansion, which will be described in section 4. It is
also generally possible to develop connected-cluster expansions for the spectra and
associated spectral weights of in® nitely long-lived excited states .

There are certain features of the expansions which depend on the degeneracy (or
lack thereof) of the ground state of H 0, so it is worth expanding on the matter.

A non-degenerate unperturbed ground state is associated with an unperturbed
Hamiltonian that consists of disconnected sites (i.e. there are no two-body terms).
These disconnected sites must have non-degenerate ground states individually,
otherwise the ground-state degeneracy of the many-body Hamiltonian would be
exponentially large in the number of sites. We denote expansions about this type of
H 0 as `high-temperature type’ expansions. (In the literature one can sometimes ® nd
such expansions referred to simply as `high temperature expansions’.) From a
practical point of view it is important that the number of states associated with
individual sites not be too large. Examples of high-temperature type expansions
which have been carried out include sites which comprise a single S ˆ 1=2 spin in an
external ® eld (large-® eld expansions) , sites which comprise coupled pairs of S ˆ 1=2
or S ˆ 1 spins (dimer expansions) , sites which comprise coupled sets of four S ˆ 1=2
spins (plaquette expansions) , and sites which comprise a coupled S ˆ 1=2 spin and
`orbital’ that can hold zero, one, or two fermions. The number of states per site for
these examples is 2, 4 or 9, 16, and 8, respectively.

Alternatively, the ground state of H 0 can be degenerate, and the expansion is
then denoted l̀ow-temperature type’. The most frequently studied examples of this
class of unperturbed Hamiltonians are Ising models on bipartite lattices, for which
the ground state, whether ferromagnetic or antiferromagnetic, is doubly degenerate.
Note that it is not possible to do a straightforward expansion for the triangular-
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lattice antiferromagnet around its Ising limit, as in that case the number of ground
states grows exponentially with the number of sites (in a typically-shaped cluster) , i.e.
there is non-zero entropy per spin at T ˆ 0. One can, however, carry out a low-
temperature type expansion for the triangular-lattice antiferromagnet by choosing as
the unperturbed Hamiltonian a ferromagnetic Ising model in rotated-spin variables,
for which the ground states in the original variables correspond to two particular
three-sublattice orderings.

Because in every case the unperturbed ground states have a local product
structure, the series expansion method appears to be most suitable when the physical
system under consideration has ® nite-range correlations. However, systems with
power-law correlations and gapless excitations can also be studied, as limiting points
of the series extrapolations, just as classical critical points can be studied by means of
high- and low-temperature expansions.

3. A brief history

Here we brie¯ y review the history of methods for constructing high-order
convergent perturbation expansions for lattice-based many-body systems. It is not
our aim to cite all of the potentially relevant literature, but we do hope to present a
clear overview of this particular corner of theoretical physics. Our main worry in
writing this section is that, as condensed matter physicists, we may be ignorant of
important papers in the ® eld-theory literature, where these calculations go by the
name of (Hamiltonian) strong-coupling expansions.

All of the methods fall into two main categories: cumulant expansions and
(linked-) cluster expansions. The former has a longer history, is well suited for low-
order calculations by hand, and is probably familiar to a fair number of physicists.
The techniques to be described in detail in this paper fall in the latter category. Even
though the end products of both types of calculations are (or ought to be!) identical,
we will argue that in some important respects the linked-cluster methods are
preferable.

An elegant presentation of the general cumulant expansion formalism is given by
Messiah in his well-known textbook [4]. To get the ¯ avour of this approach, let us
examine the structure of the expansion for the energy E of some state which, in the
unperturbed limit of the family of Hamiltonians (2), satis® es H 0j0i ˆ E0j0i and is
not degenerate with any other eigenstate of H 0 (say, j1i ) unless h1jH n

1j0i ˆ 0 for all n.
Under those conditions, one has E ˆ

P
n 0 ¶nEn where

En ˆ h0j
X

k1 ;...;kn¡ 1

H 1Sk1H 1 Skn¡ 1 H 1j0i ; … 3†

with
Pn¡ 1

iˆ 1 ki ˆ n ¡ 1, S0 ˆ ¡ j0i h0j , and Sk>0 ˆ … E0 ¡ H 0†
¡ k

… 1 ‡ S0† . (This expres-
sion is not unique but it will su� ce for the present purpose, which is merely
illustration.) This formula is the basis for perturbation expansions for the energy
of the ground state and also states which we will later characterize as s̀ingle particle’
excited states. Related formulae can be written for the expectation value of any
operator in these states.

An expression like (3) naturally leads one to construct s̀pace± time’ diagrams.
The `space’ coordinates are associated with the terms in H 1, which is an in® nite sum
involving operators at pairs of lattice sites, while the `time’ coordinates are associ-
ated with the ordering of the various terms in the product for which the expectation
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value is being evaluated. A calculation then requires constructing all of the diagrams
that can contribute at a given order and evaluating them. Fortunately this requires
only a ® nite number of computations even for an in® nite system, because only
diagrams which are connected (in a particular sense, depending on the detailed form
of the expansion) have a non-vanishing contribution.

As hinted above, the ® rst attempts to carry out high-order expansions, which
started in the early 1960s, employed cumulant expansion methods. These were in the
context of the nearest-neighbour Heisenberg± Ising model

H ˆ
X

h iji
Sz

i S
z
j ‡ ¶ … Sx

i Sx
j ‡ Sy

i Sy
j † … 4†

on bipartite lattices in one, two, and three dimensions [5± 9]. These early calculations
were carried out for general S and took advantage of detailed properties of the spin
operators; for this reason they appear much more technically complicated than
modern methods, which require separate calculations for each value of S. It may
o� er a hint of their complexity that it was not until the work of Parrinello et al. [8]in
1973 that correct results were obtained to O… ¶6† for the sublattice magnetization and
two-point correlation functions. (Note that odd powers in these series vanish, so the
terms obtained were only the second non-trivial ones.)

Cumulant expansion methods found other applications in the 1970s, such as the
work of Pfeuty and Elliot [10]on the transverse- ® eld S ˆ 1=2 Ising model expanding
both about the Ising limit

H ˆ
X

h iji
Sz

i S
z
j ‡ ¶

X

i
Sx

i … 5†

and the `disordered’ limit (where ¶ is moved from the second term to the ® rst), and
the work of Harris [11] on the dimerized S ˆ 1=2 Heisenberg chain

H ˆ
X

i

S 2i· S 2i‡ 1 ‡ ¶
X

i

S 2i‡ 1· S 2i‡ 2: … 6†

None of these calculations went beyond O… ¶4† , and (unlike some of the later papers
on the Heisenberg± Ising model cited above) they were carried out entirely by hand.
Harris’ work is noteworthy in that it is the ® rst we know of to calculate the form of
an excitation spectrum (and not just an excitation gap) to a non-trivial order. In the
late 1970s, Hamer et al. [12]generated series for the gap between ground and lowest-
excited state of one-dimensional quantum rotor models with O… 2† , O… 3† , and O… 4†

symmetries. These models have the form

H ˆ
X

i

L
2
i ‡ ¶

X

i

ni · n i‡ 1; … 7†

where n is a unit vector and L is the corresponding generator of in® nitesimal
rotations. An interesting distinction between these models and all others that we
have mentioned previously is that the state space for any single site is in® nite
dimensional. That does not cause any problems for the cumulant expansion
technique, but as we will see in section 8 it renders untenable the most naive
implementation of the cluster expansion technique. The calculations went to order ¶8

for the O… 2† model and ¶6 for the other models, and relied on computer codes to
generate and evaluate the necessary diagrams.
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Cumulant expansion methods were overviewed in the context of lattice gauge
theory in the mid 1980s by Hamer and Irving [13].

More recently, a cumulant expansion for energies was applied to the t± J ± Jz

model at half-® lling and with one and two holes by PrelovsÆek et al. [14]. These are
expansions about the Ising model. Calculations in which the hopping term alone was
the perturbation were carried out to O… t12 † , while double expansions, in both
hopping and transverse exchange, were carried out to lower orders.

Most recently, there have been a number of low-order perturbation expansions
appearing in the literature. We expect that standard cumulant expansion methods
were employed in all these hand calculations. Freericks and Monien [15] found that
for the Bose± Hubbard model one could essentially reproduce the phase diagram
which had been determined using laborious quantum Monte Carlo calculations.
Low-order calculations for spin models include dimer and plaquette expansions for
the CaV4O9 Heisenberg model [16± 18] (which will be described in section 9).

Now let us turn to cluster expansions. Relevant formalisms were ® rst described in
the early 1980s, by Kadano� and Kohmoto [19], and Nickel [20] and Marland [21].
The former authors’ approach is not very transparent, and seems to have been
applied only to a few one-dimensional systems by Kadano� and associates [22] (and
see also section 9.4). The latter approach is very straightforward in principle, has
been applied to a wide variety of models, and is the subject of this paper. Since
applications of the method are the subject of section 9, and a detailed description of
the method forms the next ® ve sections, we will restrict the present discussion to
formal developments. But ® rst let us give a very brief description of the cluster
expansion method, just enough so that the distinction between it and the cumulant
expansion method is clear.

There are two main steps in a cluster expansion. First is the identi® cation of the
® nite number of relevant connected real-space clusters for the Hamiltonian under
consideration. Then, for each cluster, one constructs the Rayleigh± SchroÈ dinger
perturbation expansion for the extensive quantity (energy, correlation function)
under consideration. The results for the various clusters are then combined
(via s̀ubgraph subtraction’ ) so as to yield the quantity per site on the in® nite
lattice.

The subgraph subtraction step is useful not only because it is essential for
obtaining the ® nal result, but it also o� ers a very strong check on the calculations. As
will be seen later, many terms are supposed to exactly cancel and subgraph
subtraction makes it obvious if they do not. Failure of any cancellation indicates
a ¯ awed calculation: either a relevant cluster has been omitted or there has been an
error in one or more of the perturbation expansions for the clusters. Only the
highest-order term in the expansion is not checked by subgraph subtraction.

Let us now return to the history of the cluster expansion formalism. An apparent
weakness of cluster expansions is that non-extensive properties such as excitation
spectra would appear to be beyond their reach. By the mid 1980s two ways to
circumvent this di� culty had been proposed and employed. One involves construct-
ing expansions for ® nite systems with periodic boundaries (and would seem to be
feasible only for one-dimensional systems): see Barber and Duxbury [23] and
Hornby and Barber [24]. Another, due to Nickel [20], is much closer in spirit to
the cluster formalism for extensive properties, but requires consideration of certain
disconnected clusters as well as the connected ones. For a description of this
approach, see He et al. [25].
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An overview of the cluster expansion formalism in the context of lattice gauge
theories was given by Hamer and Irving [26], as a partner to their article on cumulant
expansions noted earlier.

In the late 1980s, the cluster expansion formalism for ground-state properties of
Marland and Nickel was independently rediscovered by the present authors in
collaboration with Huse [27]. We must express some embarrassment over how long it
was before we learned of the earlier cluster expansion work, especially since our
implementation of the method was not as e� cient as that employed by Hamer,
Oitmaa, and their collaborators in Australia, who by that time had been applying
cluster expansions for several years. Our own collaboration, however, can at least
claim credit for some novel applications of the series expansion approach, both to
new models and new properties, as will be discussed in section 9.

The latest stage in the formal development of cluster expansion methods came
with the recognition by Gelfand [28] that connected cluster expansions could be
constructed for `single-particle’ excitation spectra and other excited-state properties
such as spectral weights. This ® nally put cluster expansions on par with the cumulant
expansion techniques, which from the beginning could treat non-degenerate excited
states on the same footing as the ground state.

We had promised at the start of this section some justi® cations for our favouring
cluster expansions over cumulant expansions. Here are two.

First, the clean separation of real-space cluster construction and perturbation
theory within the cluster expansion formalism, in contrast with the cumulant
expansion formalism, makes it easier to apply optimal techniques to each part of
the problem. For example, one can sometimes use `topological’ methods to build the
clusters, as will be described in section 7; the analogous procedure would be
awkward to implement within the cumulant expansion formalism and we do not
know that it has ever been attempted.

Second, the strong self-consistency check provided by subgraph subtraction is a
great practical advantage of cluster expansion methods. Although it is possible to
unknowingly obtain fully incorrect results using a cluster expansion, the only way to
do so is by carrying out a valid calculation for the wrong Hamiltonian or wrong
operator. We know this sort of error to be possible from personal experience, but it is
not common, and it is no less possible within the cumulant expansion formalism. In
contrast, diagrams can be inadvertently omitted in cumulant expansion calculations
without producing any obvious warning signs.

4. Cluster expansions: formalism

In this section, we will de® ne the essential features of the cluster expansion
formalism. As discussed above, the cluster expansion method is one of several
methods for calculating series expansion coe� cients of lattice statistical models. We
reiterate that we are dealing with exact series expansions so that any method, if
implemented correctly, should lead to exactly the same expansion coe� cients. The
strength of this method is that it is conceptually simple and very convenient for fully
automated computer calculations of high-order series coe� cients. The central idea of
the method is to express the expansion coe� cients for properties of a large cluster in
terms of expansion coe� cients for properties of smaller clusters. Thus, even for an
in® nite system, the expansion coe� cients to a given order are obtained from separate
series expansions done for a ® nite number of ® nite clusters. The latter calculations

M. P. Gelfand and R. R. P. Singh100
D

ow
nl

oa
de

d 
by

 [
U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

D
av

is
] 

at
 1

3:
34

 1
3 

M
ay

 2
01

4 



are in principle straightforward, since ® nite clusters have ® nite-dimensional Hilbert
spaces. The role of the in® nite lattice is to provide the number and types of di� erent
small clusters that can be embedded in it. In other words, in a cluster expansion the
calculation of series coe� cients is divided into two parts. The ® rst is identifying
distinct clusters of various sizes and counting their embeddings in the lattice and the
second is calculating properties of ® nite clusters. The thermodynamic limit is treated
at the very outset and only enters the counting of embeddings. Detailed Rayleigh±
SchroÈ dinger perturbation theory only needs to be done for one ® nite cluster at a
time. More details on how the ® nite cluster perturbation expansions are done and
how the list of distinct clusters is generated are discussed in the following sections.
Here we will set up the general formalism.

Suppose that we are interested in calculating an extensive property P for a model
de® ned on a lattice L . For example, this property P could be the ground-state
energy, the uniform susceptibility, or a sum over all second neighbour spin± spin
correlations on the lattice. For the sake of concreteness, we assume that we are
dealing with a large lattice composed of N sites, with periodic boundary conditions.
(The cluster expansion formalism is equally valid for ® nite systems with free or
periodic boundary conditions, but is rarely used in practice.) The key idea in the
cluster expansion is to express the quantity P, per lattice site, as a sum over all
distinct clusters c

P… L †

N
ˆ

X

c
L … L ; c† W … c† : … 8†

Here, L … L ; c† , called the lattice constant of the cluster c, is the number of ways per
lattice site that the cluster c can be embedded in the lattice L . The question of what
the distinct clusters are, and why the number of their embeddings is proportional to
the number of sites of the lattice, is discussed in the following paragraph. The
quantity W … c† is called the weight of the cluster. It is expressed as a power series
expansion in the appropriate variable and can be obtained from the relation

W … c† ˆ P… c† ¡
X

g c

0

W … g† : … 9†

Here P… c† is the series expansion for the property de® ned on the ® nite cluster c. The
prime indicates that the sum runs over proper subsets only. The equations (8) and (9)
de® ne the cluster expansion. It is evident that if one has a list of all distinct clusters
that can be embedded in the lattice together with their lattice constants and their
subclusters and can calculate the property P… c† for the individual clusters in a series
expansions, then using relations (8) and (9), one can obtain the series expansion for
P… L † =N in the thermodynamic limit. One additional aspect of the cluster expansion
method, which makes the cluster expansion practical, is that only smaller clusters
will contribute in low orders of the expansion. Hence, only a ® nite number of clusters
will be needed to get the exact coe� cients for the thermodynamic system, to any
given order.

We now turn to the basic de® nition of the clusters. The clusters c appearing in
equation (8) are ® nite graphs or pieces of the lattice L , consisting of a certain number
of sites and a certain number of bonds connecting pairs of sites. (We are assuming
pairwise interactions here but the method is readily generalized to more general
interactions. ) In addition, graphs which will make identical contribution to desired
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quantities are grouped together as being the same cluster. Their multiplicity is taken
into account by the lattice constant. Examples of clusters that can be embedded in
the square lattice are shown in ® gure 1. For most problems, one would consider a list
of all possible clusters. However, sometimes it is useful to shorten the list by keeping
only some of the clusters and discarding others. For example, in dimer or plaquette
expansions, elementary dimers or plaquettes may be treated as elementary units or
points. Then a bond connecting two of these points will represent all the interactions
between two dimers or plaquettes. Thus the clusters in ® gure 2 (a) will be in our list

M. P. Gelfand and R. R. P. Singh102

Figure 1. Examples of clusters embedded in the square lattice. The circles represent sites
(perhaps individual spins), while the solid lines connecting nearest-neighbour sites
correspond to terms in H1.

Figure 2. An illustration of the arbitrariness in the set of clusters included in a cluster
expansion. Here the circles can be thought of as representing individual spins, and the
dotted lines are spin± spin couplings present in H 0. As in the preceding ® gure, solid
lines represent terms in H 1. In (a) three clusters are shown that would typically be
included in the set of clusters, while in (b) three clusters are shown that would
typically not be included, because pairs of spins would usually be treated as the
elementary units in the cluster expansion.
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but those in ® gure 2 (b) will not. This arbitrariness in the set of clusters that are
included in our list leads to di� erent weights for the clusters. Thus, in reducing the
list of clusters one needs to be careful about the lowest order of the expansion in
which a given cluster will contribute. These ideas will become clearer when we
discuss the cluster expansion from the point of view of multivariable expansions.

Associated with a given cluster will be a cluster Hamiltonian. This will include all
interactions between spins within the cluster. In high-temperature type expansions
the interactions between the spins in the cluster and those outside the cluster are not
included in the cluster Hamiltonian. In low-temperature type expansions, such as
Ising expansions, the unperturbed interactions (in this case the Ising part) between
spins inside the cluster and those outside are included in the cluster Hamiltonian.
For the purpose of the cluster calculation, the outside spins remain frozen in their
ground state. Hence, in the cluster Hamiltonian, the interactions with outside spins
act as applied local ® elds on the boundary sites of the cluster.

A cluster is said to be connected, if its sites cannot be decomposed into two non-
empty groups, such that the sites of one group have no bonds connecting them to the
sites of the other group. The cluster expansions, considered here, involve expansions
in connected clusters only. It is straightforward to prove that extensive quantities like
the ground-state energy or equal-time ground state correlation functions have a
connected cluster expansion. The number of embeddings in the lattice of a given
connected cluster is proportional to the number of lattice sites: this follows from the
translational invariance of the lattice. Thus the thermodynamic limit and extensivity
of the thermodynamic quantities are built into the cluster expansion formalism at the
outset.

Next, we wish to understand the lowest order in which a given cluster contributes
to a given quantity, so that we can prepare a list of clusters that will ensure that our
desired expansions are correct to a predetermined order. For high-temperature type
expansions, this order is determined by the number of bonds in the cluster whereas
for a low-temperature type expansion, it is determined by the number of sites in the
cluster. Note that these determine the lowest order in which the cluster contributes;
the total contribution, or weight, of a cluster is typically an in® nite series starting at
some order. In a high-temperature type expansion the contribution of a cluster is
de® ned as a sum of all those terms in the perturbation theory, where the perturbing
Hamiltonian on every bond of the cluster has acted at least once. It thus follows that
a cluster with N bonds will contribute in Nth or higher order of the perturbation
expansion. In a low-temperature type expansion, the contribution of a given cluster
is de® ned as all terms where the state of every site in the cluster has been altered at
least once. Thus the order of the cluster is determined by the number of sites of the
cluster. In the case of the much studied Ising expansions for Heisenberg± Ising
models, this lowest order is equal to the number of sites in the cluster, because
contribution to a trace requires the state of every site to be altered at least twice and
in one application of the Hamiltonian the state of exactly two sites is altered. These
factors cancel each other leading to the minimum order equalling the number of sites
in the cluster. In general, such considerations need to be explored for the model at
hand. As an aside, we note that such considerations lead to a r̀igorous’ minimum
order in which a cluster contributes. That is we have a formal proof that the cluster
cannot contribute at a lower order. But it need not have a non-zero contribution at
this minimum order. In fact, quite often one ® nds that many clusters contribute only
in much higher orders. As an example, for many problems, clusters with f̀ree ends’
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contribute in much higher than the minimum order. Such graphs are also the most
numerous and have the largest lattice constants. Thus an e� cient series generation
algorithm should include clusters based on their `true’ minimum order, the lowest
order in which they actually make a non-zero contribution.

A clear insight into the cluster expansion method is gotten by regarding our
perturbation series as a multivariable expansion. Let us assume that associated with
each bond of the lattice there is a di� erent interaction variable ¶ ij . We are interested
in expanding some property P for the lattice L as a power series in the ¶ ij .

P… L † ˆ p0 ‡
X

ij
pij¶ ij ‡

X

ij

X

kl
pij;kl ¶ij¶kl ‡ : … 10†

We can regroup terms in this expansion by collecting together all terms which
depend on one ¶ij , those which depend on exactly two ¶ij , and so forth, leading to

P… L † ˆ p0 ‡
X

ij

X1

nˆ 1

an
ij¶

n
ij ‡

X

ij ;kl

0 X1

mˆ 1

X1

nˆ 1

bm;n
ij;kl¶

m
ij ¶

n
kl ‡ : … 11†

Here the prime denotes the fact that ¶ij and ¶kl are distinct. We can now associate
di� erent terms in this multivariable expansion with di� erent clusters. These will be
called the weight of the cluster. For the ® rst cluster, consisting of two sites i and j
with a bond between them, the weight of the cluster for the property P is

W … 1† ˆ
X1

nˆ 1

an
ij¶

n
ij : … 12†

Similarly, for the second cluster consisting of three sites i, j and k with bonds
between sites i and j and between sites j and k, the weight of the cluster is given by

W … 2† ˆ
X1

mˆ 1

X1

nˆ 1

bm;n
ij;jk¶

m
ij ¶

n
jk : … 13†

It is evident that:

(i) Apart from the constant term p0, each term in the multivariable expansion is
associated with exactly one lattice-embedded cluster. That is,

P… L † ˆ p0 ‡
X

c
W … c † ; … 14†

where the sum runs over all possible clusters embedded in the lattice. (Let us
emphasize that here, unlike the sum in equation (8), all clusters rather than
distinct clusters appear in the sum. We use asterisks on the cluster labels to
highlight the distinction.)

(ii) To calculate the weight of a cluster all interactions not in the cluster can be
set to zero. This de® nes the cluster Hamiltonian.

(iii) When the property P is calculated for the ® nite cluster c , apart from the
zeroth order term one simply gets a sum of weights of all the subclusters.
That is,

P… c † ˆ pc
0 ‡

X

s c
W … s † ; … 15†

where the sum includes the cluster c . From this the basic equation for
subgraph subtraction in equation (9) follows.
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(iv) If the lattice has some symmetries, such as those of translation or rotation
then all graphs related to each other by the symmetry will have the same
weight when their interactions are equal. Thus one can combine together
graphs with the same weight into a counting problem and lead to the basic
expression for cluster expansion equation (8).

(v) For properly normalized ground state properties the weights of disconnected
clusters will vanish. This follows from the fact that the ground state
wavefunction of a disconnected cluster will be a direct product of the ground
state wave function of its subclusters. Thus any desired property of a
disconnected cluster will be a sum of terms each of which will involve
interactions from only one connected group. But that is part of the weight of
that particular subcluster and the full disconnected cluster has zero weight
left after subgraph subtraction. It is somewhat non-trivial to show that a
connected cluster expansion exists for excited state properties as well, and we
defer discussion of this matter to section 6.

(vi) For a cluster with n bonds the weight of the cluster can have no less than n
powers of the interaction. Thus if we include the weight of all clusters with up
to n bonds we will have the correct expansion to order n.

We note that multivariable expansions were invoked only to illustrate the ideas
and construct formal proofs. Multivariable expansions are very cumbersome to
carry out in practice and do not need to be done. Equations (8) and (9) remain valid
when all interactions are set equal to each other, thus reducing the problem to a
single variable expansion, or a few-variable expansion when one has just a small
number of distinct interactions (for example two interactions corresponding to
nearest and second neighbour interactions on a lattice respectively) . Equations (8)
and (9) can also be derived directly, without considering the multivariable expansion,
from the combinatorial principle of inclusion± exclusion. For a discussion of this in
context of the closely related high-temperature expansions see [29].

Thus the important simplicity of the cluster expansion method is now apparent.
The calculation of series expansions for a thermodynamic system is completely
separated into two parts. One is the combinatorial question dealing with the number
of embeddings of di� erent clusters in a lattice. This is independent of the degrees of
freedom in the Hamiltonian. However, the counting does depend on the nature of
the interactions, and will be di� erent with purely nearest versus nearest and second
neighbour interactions. The second is the calculation of the weights, which is entirely
de® ned by a series expansion for the desired property of a ® nite system. Both parts
can be fully automated on a computer. The ® rst part is closely related to counting of
lattice embeddings in high and low temperature expansions of classical Ising models.
It is discussed in more detail in section 7. The second part is computationally rather
similar to Lanczos and other exact diagonalization studies, and is discussed in detail
in several of the sections that follow.

5. Ground-state properties: formalism

We saw in the last section that the problem of constructing a perturbation
expansion for some property P which is additive over disconnected clusters (such as
the ground state energy, ground state correlation functions, and T ˆ 0 suscept-
ibilities) can be reduced to the calculation of perturbation expansions for P on ® nite
clusters. Let us now see how the latter calculations can be carried out. (This section
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has been lifted not quite verbatim from [30]; another source which contains the
explicit recurrence relations for the multivariable expansions is [31].)

The cluster Hamiltonian has the same form as the full lattice Hamiltonian, which
in the simplest case of a one-parameter expansion is just

H ˆ H 0 ‡ ¶H 1; … 16†

but here all of the H ’s refer to restrictions of the full lattice Hamiltonian to the
cluster in question so that there are only a ® nite number of operators present.
Writing the ground state energy and wavefunction for the cluster as power series
in ¶ ,

E ˆ
X

i 0
Ei¶

i
; … 17†

jC i ˆ
X

i 0

jC ii ¶
i
; … 18†

inserting them into the SchroÈ dinger equation, and collecting power of ¶ , one readily
obtains recurrence relations for the Ei and jC ii in the basis of the unperturbed
eigenstates, that satisfy

H 0jki ˆ ek jki : … 19†

Let j0i denote the unperturbed ground state, and label all other unperturbed states
with positive integers. Then provided one sets

h0jC ii ˆ ¯i;0; … 20†

an arbitrary `normalization convention’ that does not a� ect any physical results but
simpli® es the intermediate formulae, the recurrence relations (valid for i 1) are

Ei ˆ h0jH 1jC i¡ 1i … 21†

and

hkjC ii ˆ … eo ¡ ek †
¡ 1 hkjH 1jC i¡ 1i ¡

Xi¡ 1

i 0 ˆ 1
Ei 0 hkjC i¡ i 0 i

" #
: … 22†

In an implementation of these recurrence relations, one starts out knowing E0 and
jC 0i (e0 and j0i ), and then evaluates E1, jC 1i , E2, jC 2i , and so on.

One can then evaluate the ground-state expectation value of an operator O to
order ¶n, provided one has evaluated the wave function to that order, via

h O i ˆ N ¡ 1 X

i 0

¶
i
Xi

i 0 ˆ 0

h C i¡ i 0 jO jC i 0 i ; … 23†

with the normalization factor N given by

N ˆ h C jC i ˆ
X

i 0

¶
i
Xi

i 0 ˆ 0

h C i¡ i 0 jC i 0 i : … 24†

These formulae can be readily generalized to expansions in more than one
parameter,

H ˆ H 0 ‡ ¶1H 1 ‡ ¶2H 2 ‡ : … 25†
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One needs to consider expansions in two variables for the calculation of T ˆ 0
susceptibilities (in which case one would want the terms in the ground state energy
proportional to ¶2

2) and there are other cases where the Hamiltonians of interest
form a space of dimension greater than one. Let us write the expansions for the
ground state energy and wavefunction as

E ˆ
X

i1 0;i2 0;...

Ei1;i2 ;...¶
i1
1 ¶

i2
2 ; … 26†

jC i ˆ
X

i1 0;i2 0;...

jC i1;i2 ;...i ¶
i1
1 ¶

i2
2 : … 27†

For the ground state energy coe� cients one ® nds

Ei1 ;i2 ;... ˆ h0jH 1jC i1¡ 1;i2 ;...i ‡ h0jH 2jC i1;i2¡ 1;...i ‡ : … 28†

For the wavefunction the result is

hkjC i1 ;i2 ;...i ˆ … e0 ¡ ek †
¡ 1 hkjH 1jC i1¡ 1;i2 ;...i ‡ hkjH 2jC i1 ;i2¡ 1;...i

‡ ¡
X

i 0

1;i 0

2;...

0

Ei 0

1 ;i 0

2 ;... hkjC i1¡ i 0

1;i2¡ i 0

2;...i … 29†

for k > 0. The primed sum runs over all i 0
l ˆ 0 . . . il , except for two terms, the one

with all i 0

l ˆ 0 and the one with all i 0

l ˆ il (so there are ¡ 2 ‡ … i1 ‡ 1† … i2 ‡ 1† terms
in the sum). In constructing both formulae we have taken h0jC i1 ;i2;...i ˆ ¯i1;0¯i2;0 , in
analogy with equation (20) for the one-variable expansions.

Note that the multivariable recurrence relations can be carried out in several
di� erent ways. If one has two expansion parameters, and one is interested in the
coe� cient En1 ;n2 , the terms could be computed in the order E1;0, jC 1;0i , E2;0, jC 2;0i ,
and so on up to jC n1;0i ; then E0;1, jC 0;1i , E1;1, jC 1;1i , and so on up to jC n1;1i ; then E0;2

up to jC n1;2i ; and continuing until reaching En1;n2 . One could just as well increment
the second index before the ® rst index. Yet other permutations are possible, but what
is essential is that in order to evaluate En1;n2 or jC n1;n2 i all of the energy and wave
function coe� cients with indices i1; i2 such that i1 n1 and i2 n2 (except of course
… i1; i2† ˆ … n1; n2† ) must be evaluated ® rst.

6. Excited-state properties: formalism

Until recently it had been thought that the cluster expansion formalism was not
suited to the calculation of excited state properties. The reason for this is that excited
state properties are not extensive and therefore not additive over disconnected
subclusters, so the basis for the cluster expansion formalism seems to be lost.

For example, consider the energy gap between the ground state and a presumed
non-degenerate lowest-lying excited state with some given set of quantum numbers
(wave number, Sz, etc). On an arbitrary ® nite cluster it does not make sense to
characterize a state by wave number, so it is not at all clear how to proceed. We
might hope to determine the gap to the lowest-lying excited state, whatever that
happens to be, but even that is apparently beyond reach. If we consider disconnected
clusters A and B and label their individual ground state and lowest excited state
energies E0;A, E1;A (likewise for B), then for the system with both clusters, A ‡ B, the
ground state energy is E0;A‡ B ˆ E0;A ‡ E0;B and its lowest excited state energy is
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E1;A‡ B ˆ E0;A‡ B ‡ min … E1;A ¡ E0;A; E1;B ¡ E0;B † . Clearly it will not generally hold
that E1;A‡ B equals E1;A ‡ E1;B, and neither is it true in general that E1;A‡ B ¡ E0;A‡ B

equals … E1;A ¡ E0;A† ‡ … E1;B ¡ E0;B † . Therefore the weights associated with these
properties will not vanish for the combined system A ‡ B, and so the formalism
which reduces the calculation of ground state expansions to calculations on a ® nite
number of (connected) clusters seems to be inapplicable here.

But cluster expansions for excited state properties are possible, as we will now
show in detail. In retrospect, it seems clear that such calculations should be possible
by means of cluster expansions, since excited-state properties had been calculated
using cumulant expansion methods for many years and the latter require considera-
tion of only a ® nite number of diagrams.

For any unperturbed Hamiltonian H 0 which is suitable for a cluster expansion,
the eigenstates can be expressed as a product of eigenstates of individual sites. (We
should emphasize, as was described in section 2, that the sites of H 0 need not
correspond to operators at a single point in spaceÐ consider for example the
dimerized Heisenberg model of equation (6).) Let us denote the eigenstates of H 0

for an individual site, say site s, by j0fsg i , j1fsgi and so forth, in order of increasing
energy °0 °1 . Note that in writing this last sentence we have implicitly
assumed that the expansion is of the high-temperature type. For the low-temperature
type expansions it does not make sense to refer to the unperturbed energy of a
single-site state, since even in H 0 there are intersite couplings. Because the
cluster expansion formalism for excited states is simpler to discuss for high-
temperature type expansions let us restrict our attention to this class of problems
for the moment, and return to the low-temperature type expansions at a convenient
point below.

For an expansion of the high-temperature type, °0 is strictly less than all the other
single-site energies, and for an N-site cluster one has (following the notation of the
last section) j0i ˆ j0f1g0f2g 0fng i . Let us now consider the excited states. There are
N states with energy … N ¡ 1† °0 ‡ °1, in which a single site is in the excited state 1, and
likewise for all the other single-site excited states. Let us refer to such states as
s̀ingle-particle’ states, and call all other excited states `multiparticle’ states. It should
be clear that for the latter the degeneracies will be of order N2, at minimum.

In the thermodynamic limit, the excitation spectrum of H 0 is characterized by ¯ at
(dispersionless) bands. If a small amount of H 1 is added to the Hamiltonian, the
bands associated with single-particle states develop dispersion but they remain
discrete, in the sense that there is only one state corresponding to each wave vector.
The bands associated with the multiparticle states develop not only dispersion but
also breadth; at any ® xed wave vector there is a spectrum of states with a non-zero
range in energy.

The problems we will be able to address directly by a cluster expansion approach
involve the single-particle states: calculations of spectra, which will be entirely
analogous to calculations of the ground state energy, and properties such as spectral
weights, which will be analogous to calculations of ground-state correlations. We
will defer discussion of multiparticle excited states to section 11. We will also need to
restrict our present considerations to single-particle states which, in the unperturbed
limit, are not degenerate with any set of multiparticle states; otherwise the full (and
presently unresolved) complications of multiparticle states arise immediately.

The calculations are simplest for single-particle excitations that are not degen-
erate with any other single-particle excitations which can be connected by powers of
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H 1. Consider, for example, the dimer Hamiltonian (6). The single-site spectrum in
this case consists of an S ˆ 0 state of the antiferromagnetically coupled pair of spins
(the ground state), and a three-fold degenerate S ˆ 1 state. The latter leads to three
degenerate sets of single-particle excited states. However, the perturbation is spin±
rotation invariant, so Sz is a good quantum number not only for H 0 but also for the
full H . As a consequence, the single-particle states with Sz ˆ 1, 0, and ¡ 1 are entirely
decoupled from one another and one can do a calculation for the Sz ˆ 1 states alone,
as if the other single-particle states did not exist. Now, if it so happens that two or
more sets of single-particle excitations are degenerate and not decoupled all is not
lost: in all that follows it will just be necessary to append a discrete `̄ avour’ index
labelling the types of excitations to the site indices in all the considerations that
follow.

The key insight which makes the cluster expansions possible is that the
appropriate quantities to consider are not simply numbers but, rather, are related
to e� ective Hamiltonians for the single-particle excited states. If we use the
unperturbed eigenstates as a basis we can represent the states of an N-site cluster
by vectors where the ® rst N components are the amplitudes of the single-particle
excited states; then the Hamiltonian has the matrix form shown in ® gure 3 (a). By
means of various possible similarity transformations

~H ˆ S ¡ 1HS … 30†

one can produce a matrix with the structure shown in ® gure 3 (b). (Precisely how that
can be achieved will be described belowÐ though of course the zeros in the o� -
diagonal blocks will only be correct to some ® nite order in ¶ , and likewise for H eff .)
Now, suppose we were to carry out such a procedure for two separated clusters, A
and B, with NA and NB sites. How is H eff for the composite system, H eff

A‡ B, related to
those for the individual clusters H eff

A and H eff
B ? If we choose appropriate bases for the

unperturbed single-particle states and appropriate similarity transforms, then in
many cases the answer turns out to be very simple, namely,

H eff
A‡ B ˆ … H eff

A ‡ EBI A† … H eff
B ‡ EAI B † ; … 31†

where I ’s denote identity operators (with subscripts identifying the space on which
they act) and the E’s denote ground state energies. Since we know the ground state
energies are additive over disconnected clusters this can be rewritten as

… H eff
¡ EI † A‡ B ˆ … H eff

¡ EI † A … H eff
¡ EI † B; … 32†

with the subscripts now applying to everything within the parentheses: notice
that H eff

¡ EI is manifestly additive over disconnected clusters, albeit not
arithmetically!

Let us now present appropriate choices for states and transforms. We take as the
basis for the unperturbed single-particle states of cluster A the `site basis’ , namely

j1i ˆ j1f1g0f2g0f3g 0fNAg i ;

j2i ˆ j0f1g1f2g0f3g 0fNAg i ;

..

.

jNAi ˆ j0f1g0f2g0f3g 1fNAg i ;

… 33†
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and likewise for cluster B and composite system A ‡ B, where in the latter the sites
labelled 1 through NA are the ones in cluster A while sites NA ‡ 1 through NA ‡ NB

correspond to sites 1 through NB of cluster B.
In order to construct the similarity transformation, we multiply the de® nition of

~H by S on the left. Since the only part of ~H that we are interested in is the N N
block H eff , we only need to construct the ® rst N columns of S which we will consider
as a set of state vectors jÁ … 1† i jÁ … N† i . Then by expanding every quantity in powers
of ¶ ,

jÁ … l † i ˆ
X

k 0

¶
k jÁ

… l†

k i ; … 34†

H eff
ˆ

X

k 0

¶
kH eff

k ; … 35†

and collecting like powers of ¶ in HS ˆ SH eff one obtains the set of equations
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Figure 3. (a) The structure of the cluster Hamiltonian in the subspace of unperturbed single-
particle excitations and unperturbed states coupled thereto by powers of H 1. (b) The
structure of the same cluster Hamiltonian, following a similarity transformation that
decouples the single-particle excitations from the other states.
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H 0jÁ
… l†

k i ‡ H 1jÁ
… l†

k¡ 1i ˆ
Xk

k 0 ˆ 0

XN

l 0 ˆ 1

jÁ
… l 0

†

k 0 i h l 0 jH eff jli : … 36†

We will demand that the similarity transformations not mix states within the single-
particle manifold, that is, each S must have an identity matrix in its upper left hand
N N block, that is

h ljÁ
… l 0 †

k i ˆ ¯k;0¯ l;l 0 : … 37†

This last condition is a generalization of the `normalization condition’ (20) imposed
in the context of the ground-state recurrence relations, and it allows us to write down
the corresponding recurrence relations (valid for k 1) for the e� ective Hamiltonian

h l 0 jH eff
k jli ˆ h l 0 jH 1jÁ

… l†

k¡ 1i ; … 38†

and similarity transform vectors

hmjÁ
… l†

k i ˆ … e1 ¡ em †
¡ 1 hmjH 1jÁ

… l†

k¡ 1i ¡
Xk¡ 1

k 0 ˆ 1

XN

l 0 ˆ 1

hmjÁ
… l 0

†

k 0 i h l 0 jH eff
k¡ k 0 jli

" #
; … 39†

where the states jmi here are eigenstates of H 0 not in the single-particle manifold.
Now consider what happens in the course of constructing the perturbation

expansion for H eff for the disconnected cluster A ‡ B. If it is not possible for the
excitation to j̀ump’ from cluster A to cluster B, that is, h lj… H 1†

njl 0 i ˆ 0 for any n, any
l ˆ 1; . . . ; NA, and any l 0 ˆ NA ‡ 1; . . . ; NB, then the o� -diagonal NA NB blocks in
H eff clearly vanish identically. The only di� erence between the upper left NA NA

block of H eff
A‡ B and H eff

A is that the diagonal elements of the two matrices di� er by the
ground state energy of cluster B. This leads to the result (31) quoted above.

Why should an excitation not jump between disconnected parts of a cluster? The
simplest answer would seem to be conservation laws, which must be considered
separately in every case. For dimerized Heisenberg models such as (6) the excited
states carry spin, which is conserved by the full Hamiltonian. The same is true for the
triplet excitations of `plaquettized’ Heisenberg models, where the unperturbed
Hamiltonian consists of isolated four-spin clusters. The latter have singlet excitations
as well: are the excitations able to move between clusters in that case? The answer
appears to be not even in that case, because the two singlet states of the plaquettes
have di� erent transformation properties under p=2 rotation of the plaquettes in real
space. The magnon (single spin-¯ ip) excitations of the transverse- ® eld Ising model
and the Heisenberg± Ising model also cannot jump, on account of Sz conservation. In
the Kondo lattice model, neither charge nor spin excitations can jump, because both
charge and spin are conserved in the model.

If the excitations in some model can jump from A to B then equation (31) should
not hold in general and it is not clear how to proceed: we will take up this point in
section 11. In the meantime let us assume that the excitation of interest satis® es
suitable conditions such that equation (31) is valid.

At this stage, calculations of excitation spectra are extremely straightforward in
principle. One can apply the machinery of cluster expansions, but rather than
applying subgraph subtraction to numbers one applies it to the e� ective Hamilton-
ians. If cluster C has a subcluster A (with, say, sites 1, 2, and 3 of A corresponding to
3, 2, and 5 of C), then the way one carries out the subtraction for this subcluster
would be to subtract h1jH eff

A j3i from h3jH eff
C j5i , and so forth. (For the diagonal
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elements one must ® rst subtract the cluster ground state energies, which is easily
dealt with.)

From the fully subgraph-subtracted H eff
¡ EI for all the clusters with up to a

given number of terms of H 1 one can then construct the e� ective Hamiltonian for
excitations on the in® nite lattice up to some ® nite order in ¶ . The latter is then
trivially diagonalized, since its eigenvectors can be expressed as exp … iq· r† . A
convenient way to carry this out is to sum up all of the matrix elements (summing
over clusters as well as within each given cluster) associated with a given lattice
vector r; if we denote that sum tr then the spectrum of the excitation is given by

°… q† ˆ
X

r

tr exp … iq· r† : … 40†

In fact one can sum up the matrix elements associated with sites at equal distances
even earlier in the course of the calculation: subgraph subtraction will work just as
well.

It is worth noting that the H eff associated with a generic cluster is in general not
symmetric, either before or following subgraph subtraction. The reason for this is
that the similarity transformation constructed following the recurrence relations (38)
and (39) is in general not a unitary transformation: the vectors jÁ … l† i which make up
the ® rst N rows of S are generally not orthogonal.

While all information concerning the excitation spectrum is encoded in the
matrices H eff associated with the connected clusters, other excited-state properties
must be derived from the vectors jÁ … l† i . These vectors are closely related to single-
particle excited-state wavefunctions, as one can easily see by considering the
equation HS ˆ S ~H and the structure of ~H : the Hamiltonian applied to any of the
jÁ … l† i generates a linear combination of the jÁ … l† i . The projection onto the single-
particle subspace can be achieved by the operator

P ˆ
X

l;l 0

g¡ 1
l;l 0 jÁ … l† i h Á

… l 0
† j; … 41†

where g is the overlap matrix

gl;l 0 ˆ h Á
… l† jÁ … l 0

† i : … 42†

Note that in equation (41), g¡ 1
l;l 0 refers to elements of the inverse of g and not inverses

of elements of g. Since the elements of g are not numbers but rather power series in ¶

the matrix inversion is not an entirely trivial matter. However, we have in our favour
the fact that g is of the form I ‡ g, with I the identity and g of order ¶1. (This is a
consequence of the fact that to order ¶0, jÁ … l † i is jli .) Then the identity

g¡ 1 ˆ … I ¡ g† … I ‡ g2
† … I ‡ g4

† … I ‡ g8
† ‡ O… ¶

16
† ; … 43†

reduces the problem of determining g¡ 1 to a modest number of additions and
multiplications of series.

With the means of constructing P in hand we can now evaluate spectral weights
for the single-particle excitations. There is some single-site operator O … r† such that
h0jO j1i h1jO y j0i ˆ 1 (that is, it couples the single-site ground state with the excited
state of interest) and all other matrix elements of O vanish. Using the Heisenberg
representation, the dynamic structure factor associated with the operator is given by
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S… q; ! † ˆ

…
dt
2p

exp … ¡ i!t†
X

r

h O … 0; 0† O y
… r; t† i ; … 44†

where the angular brackets indicate the ground-state expectation value. The
frequency-integrated structure factor S… q† is simply expressed in terms of equal-time
expectation values and is therefore calculable as a power series expansion in ¶ using
ground-state expansion techniques. But we can now say quite a bit more about the
structure factor. At ¶ ˆ 0, by construction we have S… q; ! † ˆ ¯ … ! ¡ °† , where
° ˆ °1 ¡ °0 is the single-site energy gap. For ¶ 6̂ 0, so long as the single-particle
excitations remain discrete we anticipate that the structure factor has the form

S … q; !† ˆ A… q† ¯ … ! ¡ °… q† † ‡ B… q; !† ; … 45†

where A is the spectral weight and B represents the incoherent background; as ¶ ! 0
one has A ! 1 and B ! 0. The strategy for calculating A… q† is similar to that used
for °… q† : one ® rst evaluates a real-space version and then Fourier transforms. The
relevant real-space quantity is given by

~A… r† ˆ h O … 0; 0† P O y
… r; 0† i ; … 46†

which is subjected to the cluster-expansion formalism for each value of r; and then
A… q† ˆ

P
r exp … iq· r† ~A… r† . The ground state expectation values in (46) are straight-

forward to evaluate on any cluster since the explicit form for the single-particle
excited state projection operator P is known.

Let us now brie¯ y discuss what changes in the strategy detailed above for excited-
state calculations are required for low-temperature type expansions. In such cases
there is necessarily degeneracy of lowest-lying single-site states, but this degeneracy is
broken when the intersite couplings that are part of H 0 are included and a global
ground state is selected. Thus the formalism for the excited-state calculations is
nearly unchanged; it is just necessary to recognize that the ground state of a single
site may depend on which site it is, and likewise for the excited states. Of course one
must also take into account the same considerations regarding the choice of clusters
(strong versus weak embeddings) that distinguish low- and high-temperature type
expansions for ground state properties.

The simplest examples of low-temperature type expansions are provided by
expansions about the spin-S ferromagnetic Ising model on lattices in which all sites
are equivalent. If one chooses (among the two possibilities) the global ground state
to be the one in which Sz ˆ S for all sites, then the single-particle excited states of
principal interest are clearly those in which one spin has Sz ˆ S ¡ 1. If the
unperturbed Hamiltonian is an antiferromagnetic Ising model on a bipartite lattice
with all equivalent sites then the single-site ground state is either Sz ˆ S or ¡ S,
depending on which sublattice the spin sits. There are then two (obviously
degenerate) sets of single-particle excitations, those in which a single spin in the
`up’ sublattice has Sz ˆ S ¡ 1 and those in which a single spin in the `down’
sublattice has Sz ˆ ¡ S ‡ 1.

Finally, let us note that for one-dimensional systems a special type of low-
temperature type expansion for excited states is possible. In such cases, the
unperturbed Hamiltonian supports a ® nite-energy excitation which is di� erent from
changing the state of a single site with respect to the global ground state. Instead one
can have a zero-dimensional interface between distinct global ground states; this is
generically known as a soliton excitation. Again, the same general formalism applies,
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but the single-particle (in this case, single-soliton) excited states can not be
conveniently expressed in the form (33) since there will be one site, at the interface,
which does not have a unique ground state. As a consequence there may be several
distinct types of soliton states. These considerations have been discussed in detail, in
the context of expansions about Ising antiferromagnetic chains for various values of
S, by Singh [32].

7. Constructing clusters: implementation details

In this section we discuss aspects of graph generation and counting. For those
readers with experience using Lanczos and other exact diagonalization techniques,
the details of weight calculations may appear familiar; thus this section o� ers the
most signi® cant bit of extra technical knowledge required to generate high-order
series expansions. Our discussion is oriented towards practical aspects of graph
generation, and hence will be kept as informal as possible. We will rely on simple
arguments and omit formal proofs. With the help of modern computers, the graphs
are constructed essentially by a brute force method, although there are many tricks
to make the computation more e� cient. From a practical point of view, one may
wish to begin with the simplest procedures especially if the bottleneck for computa-
tions lies elsewhere (which typically is the case for many quantum cluster expan-
sions) . Once the reader is familiar with the basic aspects of graph counting, he can
look up more sophisticated algorithms in the literature or invent them for himself. In
this section, we ® rst discuss a simple but complete algorithm for generating a list of
connected graphs or clusters. Towards the end, we discuss ways of improving the
algorithm.

We begin with a few simple de® nitions. A graph or cluster consists of N nodes
and M bonds. A bond joins a given pair of nodes. Our graphs are linear in the sense
that there can be at most one bond between two nodes. It would greatly help the
reader to keep an example in mind. For this purpose consider the 6-node, 6-bond
graph shown in ® gure 4 (a). By an embedding of the graph in a given lattice, we mean
an assignment of lattice coordinates to di� erent nodes of the graph, modulo
translations. For connected graphs, the number of embeddings is proportional to
the number of sites in the lattice (we are working with an in® nite lattice). This simply
re¯ ects the translational symmetry and hence it makes sense to identify all graphs
which are translations of each other, and only discuss counts per lattice site. The aim
of the computation is to prepare an exhaustive list of all di� erent types of such
graphs with up to Nmax nodes or Mmax bonds, the node-limited counts applying to
low-temperature type expansions, also known as strong embeddings, and the bond-
limited counts to the high-temperature type expansions, also known as weak
embeddings. Furthermore, one needs to determine the lattice constant and the list
of all subgraphs for each graph in the list.

For our simple algorithm, we further consider two graphs to be the same if and
only if they are related by a (point-group) symmetry of the lattice. Thus the graphs in
® gure 4 (a) and ® gure 4 (b) are the same but the one in ® gure 4 (c) is di� erent. To get a
list of all graphs, we need to represent them in an abstract way. We assume here that
we are dealing with high-temperature graphs, and just note that the adaptation to
low temperature graphs is straightforward. We will also, for concreteness, restrict
our attention to the square lattice, where the sites on which the nodes sit are labelled
by two integer coordinates, and interactions are only between nearest-neighbour
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sites. A bond is associated with the pair of sites that it connects. The list of node
coordinates together with the pairs that are connected by bonds completely speci® es
the graph and its embedding. Note that at this stage how the sites are labelled,
namely which site is called ® rst, which second etc. is arbitrary.

Since graph enumeration involves repeated comparison of one graph with
another it is important to have as succinct a representation of the graphs as possible.
In a high-temperature type expansion, a graph is completely speci® ed by its bonds.
Hence, it would be useful to have coordinates assigned to the bonds. Then these
bond coordinates themselves completely specify the graph and one would not need
to keep additional information on the sites. In our case, the coordinates of a bond
can be de® ned as the mean of the coordinates of the two sites it connects. Note that
this may not always specify the bond uniquely (for example, for second-neighbour
interactions on the square lattice two di� erent bonds have the same mean
coordinate, and in that case one would need an additional binary index to specify
the bond). Thus our graph in ® gure 4 (a) is fully speci® ed (if the origin is at the
bottom left of the nodes displayed) by saying that there are bonds present at … 1

2 ; 0† ,
… 0; 1

2† , … 0; 1 1
2† , … 1; 1

2† , … 1; 1 1
2† , … 1

2 ; 1† . Once the bonds are drawn at those coordinates, it
would be evident what sites are present and what their coordinates are. Note that, in
our example, half-integer x-coordinates are associated with horizontal bonds and
half-integer y-coordinates with vertical bonds.

So far, our characterization of graphs speci® es a graph embedding at a given
location and with a particular orientation on the lattice. However, we require a list of
distinct graphs or clusters. That is, we need to take only one of the many symmetry-
related embeddings as our representative graph. For this we need to construct a
simple but de® nite rule so that, given any graph embedded on the lattice, we can
easily determine its corresponding representative graph. To achieve this, we ® rst
require that the origin must be one of the nodes of the representative graph. The list
of symmetry-related graphs containing the origin is ® nite. We can choose the
representative graph by asserting that among all symmetry-related graphs which
include the origin, the representative one is the one with the l̀argest’ set of bond
coordinates, according to a particular lexicographic ordering scheme. In the next
paragraph we give an example of such a scheme.

Consider sets of numbers with a given number of elements, for example, the bond
coordinates of a graph. Lexicographic ordering works the same way as the ordering
of words in a dictionary. To compare two sets of numbers, one ® rst compares the
® rst element of the two sets, followed by the second element, then third element, and
so on, as long as the elements agree. The two sets are equal if and only if the entire
set of elements is identical. The ® rst time one ® nds a di� erence in the elements, the
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Figure 4. Examples of 6-bond, 6-site graphs embedded in the square lattice.
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set having the larger element is said to be the larger set. For a given graph, there is an
arbitrariness in which bond is called the ® rst, which the second, and so on. This
arbitrariness can be removed by ordering the bonds to get the largest set of bond
coordinates associated with the graph. Note that for an N-bond graph, the
coordinates are represented by 2N numbers. We will compare ® rst the x-coordinate
of the ® rst bond, then the y-coordinate of the ® rst bond, then the x-coordinate of the
second bond, then the y-coordinate of the second bond, and so on. Then for all
symmetry-related graphs which include the origin, our representative cluster is the
one which leads to the largest set of bond coordinates (after the bond labels are
ordered in each individual graph so as to yield the largest set of coordinates for that
graph) . We can simply refer to this set of bond coordinates as our cluster. We have
created a one-to-one correspondence between a cluster and an ordered set of
numbers. For our example, the representative cluster embedding has bond coordi-
nates in order: … 2; 1

2† , … 11
2; 1† , … 11

2; 0† , … 1; 1
2† , … 1

2; 1† , … 1
2; 0).

Now, we can obtain the list of required clusters order by order as follows: let the
number of bonds in a cluster (or the number of nodes, if one is interested in a node-
limited count) denote the order of the cluster. The lowest order cluster is the one with
two nodes connected by a bond. All clusters of order M ‡ 1 can be obtained from
some cluster of order M by either adding a bond between existing nodes or adding a
bond from an existing node to a new node. For example, the graph of ® gure 4 (a) can
be obtained from a 5-bond graph with 5 nodes or a 5-bond graph with 6 nodes, as
shown in ® gure 5. However, if we try to generate all clusters of order M ‡ 1 by
exhaustively adding bonds between nodes or bonds to extra nodes for all clusters of
order M, the big problem would be that a given cluster will be generated many times.
However, we can ® nd the unique set of numbers that represent the cluster, following
the lexicographic ordering discussed earlier, and thus eliminate all duplicates in the
cluster generation. Thus we can prepare an exhaustive list of all clusters to the
desired order.

The lattice constant of the cluster is simply obtained by performing all the
discrete symmetry operations on the cluster and counting the number of embeddings
that are not related to each other by translation. For the graph of ® gure 4 (a), the
lattice constant is 4. The list of subgraphs can also be obtained by a brute force
method. For a cluster with N bonds, one considers all 2N ¡ 2 possibilities, where a
given bond is either present or absent (excluding the cases when all bonds are present
and all are absent) and looks at the resulting graph of bonds present. One checks to
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(b)(a)

Figure 5. The sample graph of ® gure 4 (a) can be obtained from either (a) a 5-bond, 5-site
graph by adding a site and connecting it by a bond (shown by a thin dashed line) to
an existing site, or (b) from a 5-bond, 6-site graph, by adding a bond (again shown by
a thin dashed line) between existing sites.
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see if the present bonds form an acceptable subgraph. This can be done by
determining the unique set of bond coordinates for this subgraph and checking
with the existing list of smaller clusters to see if it appears on the list. If it does not
appear on the list then it must be a disconnected subgraph, and it is discarded. If it
appears on the list, then it is a valid subgraph. For the graph of ® gure 4 (a), the
complete list of its subgraphs is shown in ® gure 6, with the number of subgraphs of
each type stated in the ® gure caption.

The above scheme is perhaps the simplest conceptually, but it is not particularly
e� cient. The drawback of the scheme arises from the fact that the number of distinct
clusters grows very rapidly with order. Many graphs which are not related to each
other by a lattice symmetry operation can still have the same contribution to the
physical quantities desired. In an e� cient scheme they should be identi® ed as
the same cluster, thus only adding to the lattice constant of the cluster and not to
the number of distinct clusters, but this is not being done in the method described
above. However, the advantage of this scheme, apart from its simplicity, is that every
symmetry-unrelated embedding is treated separately. Thus all information required
for calculating spatially dependent correlations is present in this list. With modest
computational facilities, this scheme is typically practical for 10th order calculations.
For problems where the size of the basis set grows rapidly with number of sites or
elementary units, such as the Kondo or Anderson lattice, or double-exchange
models, or plaquette expansions for Heisenberg models, graph generation is likely
to be the easiest part of the calculation, and the above scheme is recommended for its
simplicity and generality. On the other hand, for transverse-Ising or Heisenberg±
Ising models, where the weight calculations are fast and simple, the graph generation
becomes a computational bottleneck, and one needs a more e� cient scheme for
carrying it.

For some properties, such as ground state energy or uniform susceptibility, the
weight of a graph only depends on its topology or connectedness, which we will
de® ne below. The key to developing a more e� cient scheme is to combine together
all graphs which have the same topology. Let us order the N nodes of our graphs in
some arbitrary manner. We can represent our graph by an N N matrix A, with
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Figure 6. A list of all geometrically distinct subgraphs of the graph in ® gure 4 (a). The
number of times each subgraph appears in the graph, starting from the upper left
hand corner, is 6, 6, 2, 5, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 1, and 1, respectively.
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Aij ˆ if i and j are connected by a bond and zero otherwise. The connectedness or
topology of the graph is fully speci® ed by the adjacency matrix A. It is evident on
inspection that if two graphs have the same adjacency matrix their associated ® nite-
dimensional quantum mechanical Hamiltonians will be identical and thus they
would have identical ground-state energies and uniform susceptibilities. However,
in general two such graphs will have di� erent embeddings on the lattice and thus
their contributions to any spatially-dependent quantity, such as the spin± spin
correlation function for spins at a given spatial separation, will be di� erent. An
example of two graphs with the same topology, which were treated as distinct before
are the graphs in ® gures 4 (a) and (c).

In order to work with the topological graphs or clusters, we need to de® ne a
unique adjacency matrix for each graph. Since our labelling of nodes is arbitrary, the
adjacency matrix speci® es the graph only up to a permutation of those labels. To get
a unique representation for the graph, we can lexicographically order the adjacency
matrices and, among all permutations of the node labels, choose the one which gives
the largest adjacency matrix. This leads to the labelling of nodes for our sample
graph as shown in ® gure 7 (a). The adjacency matrix becomes

0 1 1 1 0 0

1 0 0 0 1 1

1 0 0 0 1 0

1 0 0 0 0 0

0 1 1 0 0 0

0 1 0 0 0 0

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

:

This way of picking an adjacency matrix is very ine� cient, as the N! permutations
required for a cluster of N-nodes rapidly becomes very large. A way around it is to
® rst order the nodes in order of decreasing valence (de® ned as the number of bonds
that meet at that node) and then only consider permutation of nodes with the same
valence choosing the largest adjacency matrix among this restricted set. With this
scheme, the labelling of nodes for our graph becomes as in ® gure 7 (b) and the
adjacency matrix becomes
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Figure 7. Two di� erent labellings of nodes for the sample graph of ® gure 4 (a).
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0 1 1 0 1 0

1 0 0 1 0 1

1 0 0 1 0 0

0 1 1 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

:

One can easily convince oneself that this de® nes a unique adjacency matrix for the
graph. Note that there may be more than one permutation of the node labels which
leads to the same adjacency matrix. This would re¯ ect symmetries of the graph,
which could in principle be exploited in the weight calculations.

One can now begin by generating all distinct embeddings and prepare a list of
topologies by collecting together all graphs with the same adjacency matrix.
However, this scheme is again not very e� cient. It is much better to obtain directly
a list of topological graphs. All topological graphs of order N ‡ 1 can be obtained
from those of order N by the operations of adding a bond between two existing
nodes, or adding an extra node to the system and connecting it by a bond to an
existing node. After removing all duplicates in the process, one has a complete list of
all topological graphs.

To ® nd the lattice constant of a given topological graph is non-trivial, as it is not
simply related to the symmetries of the lattice. One needs to exhaustively try out all
possible embeddings of the graph on the lattice (barring those related by transla-
tions) to determine this number. This can be achieved as follows: one places the ® rst
node at the origin of the lattice, and with that point ® xed, exhaustively enumerates
all possible ways of embedding the rest of the nodes in the lattice, ensuring that no
two nodes fall on the same site and that those connected by a bond are indeed
nearest neighbours on the lattice. Embeddings that are translations of a previously
obtained one are discarded. An excellent recursive algorithm for calculating lattice
constants is discussed by Martin [33]. Treated as a topological graph, the lattice
constant for our sample graph is 16.

At this stage, spatial correlations can be generated from the list of topological
graphs as follows: ® rst calculate all pair-wise correlations for the topological graph.
However, the distance associated with any pair will depend on the speci® c
embedding. In order to correctly assign distances to pair-correlations, one needs
to go through the list of all embeddings of the graph (as is needed in obtaining the
lattice constant) and identify the corresponding spatial distances for each pair. It is
then possible to calculate the spatial correlations and wave vector dependent
properties.

An even more e� cient method for generating a complete list of graphs is to ® rst
reduce the graphs to a skeleton graph or topology by ignoring all nodes with valence
two. The resulting skeletons contain the basic shape of the graph. The bonds are now
appropriately thought of as bridges between the nodes, which can have various
lengths. Furthermore, there can be more than one bridge between two nodes. One
can now begin by generating a list of skeleton graphs up to certain order and then by
assigning various lengths to bridges recover the full list of graphs. From a math-
ematical point of view, the set of all skeleton graphs can be divided into two
categories, (i) star-graphs (also known as multiply connected graphs) and (ii) tree-
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graphs. The simplest tree-graph is a Cayley tree, which has no closed loops, and its
basic elements are linear segments which are joined together in some tree-like
pattern. For the most general tree-graph, the basic elements are star-graphs, which
are connected together in a tree-like pattern. Then, it is theoretically possible to
obtain a listing and count of all connected clusters starting from star-graphs alone by
simple algebraic relations. This is signi® cant as the number of star-graphs is much
smaller than the number of all graphs, and excellent generation algorithms and high-
order listings of star-graphs exist in the literature. However, in practice, getting
counts for tree-graphs from those of star-graphs is a non-trivial task and in most
cases one proceeds by a brute force enumeration of all possible graphs.

It is evident that there is no unique way to generate a list of all graphs. A variety
of methods have been used in the past. We hope our discussion here helps the reader
in understanding the various steps involved in the calculation, and in creating their
own schemes for generating graphs. For more details in certain cases we refer the
reader to the literature [2].

8. Weight evaluations: implementation details

In this section we will describe the nuts and bolts of weight calculations. We aim
to make the description su� ciently detailed that an interested reader can write code
which is both functional and reasonably e� cient. After giving an essentially
complete discussion, we will share with the reader two t̀ricks of the trade’ which
make it possible to carry out weight calculations even more e� ciently. We are
indebted to the Zheng Weihong, J. Oitmaa and C. J. Hamer, at the University of
New South Wales, for sharing with us the second of those ideas.

We begin with an overview of the simplest weight calculation algorithm. Let us
restrict our attention, for convenience, to a single-variable expansion. Let us also
consider our calculation to be complete once the expansions for the ground state
energy and eigenvector (see equations (21) and (22)) , or e� ective Hamiltonian and
similarity transform (equations (38) and (39)), have been obtained, since the further
calculation of expectation values or spectral weights is relatively straightforward.

Step 0. Construction of b̀asic matrix elements’ . In order to calculate the matrix
elements of H 1 for any given cluster it is necessary to know the matrix
elements associated with each term of the perturbing Hamiltonian
(which will typically be associated with two sites). These `basic matrix
elements’ need to be calculated only once, before the individual cluster
calculations are carried out. One wants to know these matrix elements in
the basis in which the single-site (unperturbed) Hamiltonian is diagonal.
For some kinds of expansions, such expansions in transverse exchange
or transverse ® eld about the S ˆ 1=2 Ising model, the matrix elements
are trivial to write down by hand. In other cases, such as dimer or
plaquette expansions, it is useful to do as much as possible using the
computer, in order to avoid insidious errors. (Errors in the basic matrix
elements may not manifest themselves in the weight calculations until
relatively high order in perturbation theory, and can be very di� cult to
track down.) In the latter cases, we have found it convenient to do things
in the most straightforward way, going from the site-eigenstate basis to
the spin-Sz basis, using this for the calculation of the matrix elements,
and then converting back to the site-eigenstate basis. Note that when
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two dimers are coupled by a bilinear term S a · S b , the matrix elements
depend on which spin of the ® rst dimer S a refers to, and likewise for S b

of the second dimer. It is in general necessary to construct several basic
matrices, and to know how to associate each term in the perturbation
with the appropriate basic matrix.

Step 1. Identifying the relevant states for a given cluster. Typically the
perturbation does not destroy all of the symmetries of the unperturbed
Hamiltonian, so that there is some obvious subset of the complete set of
states of a given cluster for which hkjC ii (or hmjÁ

… l†

k i ) can be non-zero. In
the context of spin models, total Sz is often a good quantum number; for
example, in many cases of expansions about dimer Hamiltonians for
ground-state properties, only states with vanishing total Sz need to be
taken into account.

In order to make this identi® cation of relevant states useful, it is
necessary to construct a list of these states; if there are Nr such states,
one needs to have a function which, given an integer between 1 and Nr,
returns the site eigenstates associated with that state of the cluster. We
have found it most e� ective to store the site-eigenstate representation of
the states as a single integer, in the obvious way: if there are M site
eigenstates, denoted 0 through M ¡ 1, and the state has the form
(following the discussion in section 6) jm… 1†

1 m… 2†

2 m… 3†

3 i then the
numerical representation is m1 ‡ Mm2 ‡ M2m3 ‡ . For N-site clusters
this representation will run into practical di� culties once MN becomes
larger than the largest integer that can be represented e� ciently on one’s
computer (nowadays, typically 231); however this has not been a problem
in our applications. One advantage of storing the site-eigenstate
representation as a single integer rather than a list of N integers is clearly
the reduced memory requirement. One disadvantage is that one needs to
convert to the latter representation many times in the course of the
calculations. However, this penalty in computer time is more than
compensated for by savings in computational e� ort that will be
discussed in Step 5.

Step 2. Constructing the unperturbed energies. This is probably the most
straightforward step in the calculation. In principle one could calculate
the ek on demand and further reduce the amount of memory required for
the calculation, but we have not tried to implement this.

Step 3. Executing the recurrence formulae. It is also not di� cult to code the
recurrence formulae, either for the ground-state or excited-state
calculations. One useful point to recall is that one can determine the
… n ‡ 1† st order energies from the nth order wavefunctions with very little
e� ort. Since memory will typically be the limiting factor in the
calculations and the wavefunctions account for the bulk of the code’s
memory usage, it is always worth taking advantage of the extra order in
the energies that one gets almost for free.

In the recurrence formulae, the bulk of the calculations are hidden in
the calculations of the matrix elements such as h kjH 1jC i¡ 1i . These we
consider a separate step.

Step 4. Evaluating matrix elements of H 1. Such calculations are, essentially, a
long series of look-ups in the table of basic matrix elements. Rather than
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trying to calculate a single matrix element such as hkjH 1jC i¡ 1i , it is easier
and more e� cient to calculate a vector such as H 1jC i¡ 1i all at once:
starting with each unperturbed eigenstate jpi such that h pjC i¡ 1i 6̂ 0,
apply each term in H 1 to j pi . That last step is where the basic matrix
elements come in. The resulting non-zero elements, multiplied by the
relevant entry in jC i¡ 1i , should then be accumulated in a new vector,
provided the non-zero element does not correspond to a state of the low-
energy manifold (see equations (20) and (37)) .

Note that in the evaluation of the matrix elements, as described above,
we have implicitly assumed that the unperturbed eigenstates are
represented as lists of single-site eigenstates. In fact, one needs to know
what these matrix elements are when the states are represented by
integers from 1 to Nr, as described in Step 1. In Step 1 we have already
described (at least in principle) how to go from that integer to the list of
single-site eigenstates. Going the other way is su� ciently important to
do properly that we will treat it as another separate step.

Step 5. Finding the label for an unperturbed eigenstate given the single-site
eigenstate representation. In principle, one could carry out this step by
searching through all Nr relevant states until one ® nds a match.
However, we would not advise it! A far more e� cient procedure is
possible, provided that one uses an integer representation (as described
in Step 1) to encode the single-site eigenstate representation. When
carrying out Step 1, it is natural to generate the relevant states in such a
way that the integer representations are an increasing function of the
state labels. Thus one has an ordered list of the relevant states. Searching
such an ordered list can be done e� ciently using a binary search: this
step is then reduced from an O… Nr † process to an O… log2 Nr† process.

This works very well for the ground-state calculations. In such cases, the
unperturbed ground state will inevitably carry the lowest integer representation
and will be the ®̀ rst’ on the list of Nr states. However, there is a bit of a complication
for the excited-state calculations. Then, it is convenient for the purposes of Step 3
that the unperturbed low-energy manifold, comprising say L states, to carry the
labels 1 through L . However, those states will not have the L lowest integer
representations among the relevant states. One can still code Step 3 simply and
carry out Step 5 e� ciently, but it is necessary to construct two additional arrays of
integers with Nr elements. In Step 1, one ® rst constructs an integer-representation-
ordered list of relevant states. One then rearranges the order of this list so that the
low-energy manifold comes ® rst; but when doing this rearranging one generates an
index array, and from the latter one generates an inverse index array. The index
array shows how to go from the c̀urrent’ list of states, in which the low-energy
manifold comes ® rst, to the integer-representation-ordered list. That is, suppose that
the ®̀ rst’ state in the low-energy manifold was the thirteenth state in the integer-
representation-ordered list. Then the ® rst element of the index array is 13, and the
thirteenth element of the inverse index array is 1.

With the integer-representation-ordered list, the index array, and the inverse
index array all at hand, the procedures described above are modi® ed as follows. In
order to carry out Step 5, one does a binary search through the integer-representa-
tion-ordered list, then uses the inverse index array to determine the state label. In
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order to carry out Step 4, starting with a state label one uses the index array to ® nd
where the integer representation of the state sits in the ordered list, and then uses the
integer representation as before.

Let us now turn to the promised tricks of the trade.
First, use a sparse matrix representation for the basic matrices. This trick is very

easy to implement, and if there are several states per site it can produce signi® cant
savings in computational time. The point is that by using a sparse matrix
representation one avoids all look-ups of basic matrix elements that are zero. Since
the large majority of basic matrix elements tend to be zeros when the individual sites
have many states (and the perturbation does not break too many symmetries) , one
can get a substantial speed-up in Step 4.

Second, identify the t̀ruly’ relevant states rather than just the `potentially’
relevant states as indicated in the description of Step 2 above. That is, one can
determine, for a given graph and order n to which some ground-state property is
desired, exactly the unperturbed eigenstates jki which one needs to evaluate the
hkjC ii (and analogously for excited state calculations) . Consider, for example, the
ground state energy to order n. A straightforward implementation of the recurrence
relations (21) and (22) would require the evaluation of hkjC n¡ 1i for all states jki for
which it is non-zero. However, all one really needs to know it for are for jki such
that h0jH 1jki is non-zero. Let us look at this from another angle. A calculation of the
ground state energy to nth order, fully written out, involves terms of the form

1
… energy denominator†

h0jH 1jk1i hk1jH 1jk2i hkn¡ 1jH 1j0i : … 47†

Each application of H 1 potentially takes one farther away from the unperturbed
ground state j0i , but after n such steps one has to be back at j0i . Hence the
intermediate states which require the most applications of H 1 to reach from the
ground state must be in the middle term; these are states jki which have
hkjH q

1j0i 6̂ 0, where q ˆ n=2 for even n and … n ¡ 1† =2 for odd n.
Similar arguments allow one to determine the truly relevant states for other

properties such as susceptibilities, excited state energies, and ground state expecta-
tion values (but see below). By only storing the hkjC ii for the truly relevant states,
enormous savings in memory requirements and computation time are possible. Let
us brie¯ y outline how the program outline given above needs to be changed. Steps 0
and 1 go as before, and then one immediately goes on to determine which of the
potentially relevant states are truly relevant. This involves applying H 1 to the
unperturbed ground state some number of times and keeping track of which states
are generated in the process. One might imagine that this step would take almost as
much time as calculating the ground state energy using the full set of potentially
relevant states, but in fact it goes much faster because no arithmetic is being done.
Once the truly relevant states are determined, one then goes to Step 2 and continues.

A potential problem with the improved algorithm is that it has fewer self-
consistency checks than the simpler, slower algorithm. When one is keeping all of the
potentially relevant states in the calculation, there is a strong check in Step 5, which
will fail if the state for which one is trying to ® nd the corresponding label is not a
potentially relevant state. That is, if one seems to be ® nding that hkjH 1jC ii is non-
zero for some jki which is not potentially relevant, then there must be an error
somewhere in the code. However, when only the truly relevant states are being dealt
with, such f̀ailures’ in Step 5 are entirely routine. Consequently, we have found it
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useful to ® rst carry out calculations using the potentially relevant states up to some
order (typically fourth) by which point one expects any coding errors to manifest
themselves. After the simple code is thoroughly debugged the calculation using the
truly relevant states can be run, and one can check the consistency of the latter’s
results with those of the former.

Another weakness of the improved algorithm, when ground-state expectation
values are of interest, is that it is only guaranteed to be useful when the quantities
being evaluated are diagonal in the unperturbed basis. For such quantities the truly
relevant states are the same as for the ground state energy. For quantities which are
o� -diagonal in the unperturbed basis, additional states are truly relevantÐ possibly
so large a fraction of the potentially relevant states that the computational overhead
associated with identifying them could exceed the time saved in carrying out the rest
of the calculation.

9. Applications

In this section we present a catalogue of calculations utilizing high-order
convergent Rayleigh± SchroÈ dinger perturbation expansions. In some cases, we will
mention work based on low-order expansions (which are typically carried out by
hand via cumulant expansion rather than by the methods described in this review)
which is of interest for one reason or another, but we have made no e� ort to include
all such calculations. High-order strong-coupling expansions have found many
applications in the context of ® eld theory, but our coverage of that literature is
not intended to be comprehensive. We leave a thorough review of that work to those
with better quali® cations in that ® eld. In keeping with our condensed-matter bias, we
will try to express the degrees of freedom in the various models, as much as possible,
in terms of quantum spins.

We have two principal purposes in presenting this overview of the literature. One
is to give the reader a relatively easy way to ® nd out what problems in condensed
matter physics have been addressed using high-order perturbation theory. The other
is to give the prospective user of these methods a better idea of what sorts of
problems might be addressed.

All the works we will describe here have several standard components. There is a
family of models of interest, which is decomposed into an unperturbed Hamiltonian
H 0 and a perturbation ¶H 1 (or perhaps several perturbations). Power series in ¶ are
computed for various quantities of interest, which are extrapolated and interpreted.

In order to organize this compendium, we will use the unperturbed Hamiltonians
which have underlied the perturbation expansions. Under each H 0, we will then
mention the models of interest and the quantities that were calculated, giving
references to the literature.

9.1. Ising models
Ising models are characterized by the value of S of the quantum spins that are the

degrees of freedom in the model, and exchange couplings of the form Sz
i S

z
j . Typically

the couplings are between nearest-neighbour sites on a bipartite lattice, but more
general couplings are possible; the crucial feature, for the purpose of perturbation
expansions, is that there should be just two ground states related by Sz

i $ ¡ Sz
i .

Most of the calculations in the literature are concerned with S ˆ 1=2 models, so
when S is not explicitly mentioned that value should be assumed.
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Ising models are the obvious starting points for calculations of NeÂ el-ordered
states in antiferromagnets. They have also proven useful in calculations for models
with algebraic NeÂ el order (such as the S ˆ 1=2 Heisenberg chain) , and even in some
cases where NeÂ el order is absent (where demonstrating the limit of stability of the
NeÂ el-ordered phase is the main problem).

9.1.1. Expansions for Heisenberg models
As noted in section 3, some of the earliest applications of the cumulant expansion

techniques [5± 9] were to the Heisenberg± Ising models,
X

h iji
Sz

i S
z
j ‡ ¶

X

h iji

… Sx
i Sx

j ‡ Sy
i Sy

j † ; … 48†

which interpolate between the Ising model at ¶ ˆ 0 and the Heisenberg model at
¶ ˆ 1.

There have been more studies of Heisenberg models by series techniques than of
any other class of models. Section 10 describes how the series calculations have ® t
into the whole framework of numerical studies of the square-lattice, S ˆ 1=2
Heisenberg model. We will not repeat the review of that literature here. One related
work not listed in that section is Oitmaa and Zheng [31], in which expansions were
carried out not only in the transverse exchange couplings but also in the strengths of
staggered longitudinal and uniform transverse ® elds.

Ising expansions can also be applied to the square lattice with further than
nearest-neighbour exchange interactions. Including second-neighbours, Oitmaa and
Zheng [34] have constructed expansions in the transverse exchange for order
parameters, susceptibilities, and energy gaps, in order to determine the domains of
stability of magnetically ordered phases.

S ˆ 1 square-lattice Heisenberg model ground state properties (ground-state
energy, sublattice magnetization, transverse susceptibility, and spin sti� ness) have
been estimated by expansions around the Ising model by Singh [35] and by Hamer
et al. [36].

Oitmaa et al. [37] have considered the nearest-neighbour Heisenberg± Ising
antiferromagnet on the honeycomb lattice, generating expansions for the ground-
state energy, triplet gap, magnetization, and staggered longitudinal susceptibility. In
this same paper they also studied the `XY -Ising’ honeycomb antiferromagnet (taking
as the perturbation

P
h iji Sx

i Sx
j rather than both the xx and yy terms) as well as the

triangular lattice Heisenberg± Ising ferromagnet. These authors have also examined
the XY -Ising square lattice ferromagnet [38], carrying out series expansions for the
ground state energy and energy gap, magnetization, longitudinal susceptibility, and
the two transverse susceptibilities. Later, they constructed a similar collection of
perturbation expansions for the S ˆ 1=2 and S ˆ 1 Heisenberg± Ising antiferro-
magnets and the S ˆ 1=2 XY -Ising model on various three-dimensional lattices,
and made detailed comparisons with the results of spin-wave theory (which they
extended to order 1=S3) [39].

S ˆ 1=2 Heisenberg± Ising chain correlation functions were studied by Singh et al.
[40]. The properties of interest were both the longitudinal and transverse correlation
functions, which were found to exhibit di� erent critical properties as the Heisenberg
model was approached.

Spatially anisotropic d ˆ 2 Ising models were investigated by Ising expansions
(as well as other expansions) by Aƒ eck et al. [41]. The issue being addressed was
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whether NeÂ el order survived in the Heisenberg model for strongly anisotropic
couplings. Quantities for which series were generated included the magnetization
and static correlation functions (from which the correlation length anisotropy was
derived).

The S ˆ 1 chain was examined using expansions about the Ising model by Singh
and Gelfand [42]. In fact, a wider class of models than the S ˆ 1 Heisenberg± Ising
chain was considered, in that `dimerization’ (or `bond alternation’) was another
parameter. To be precise, the models under consideration had the form

X

i

… Sz
2iS

z
2i‡ 1 ‡ ¯Sz

2i‡ 1S
z
2i‡ 2† ‡ ¶

X

i

… transverse components† : … 49†

This model has a rich phase structure in the ¯ , ¶ plane, which was explored in part by
expansion in ¶ of the staggered magnetization and correlation functions. (It is worth
noting that the phase diagram presented in that paper is not entirely correct, in that
the phase boundary between the Haldane phase and the XY -ordered phase does not
actually go into the multicritical point: see Kitazawa et al. [43]. That particular phase
boundary was not accessible to any of the series expansions, and so was drawn
entirely speculatively.)

Elementary excitation spectra for S ˆ 1=2, 1 and 3/2 Heisenberg± Ising chains
have been calculated by Singh [32]. There are two noteworthy features of this work.
One is that topological excitations were studied. The second was the use of an extra
term in the perturbing Hamiltonian for S ˆ 1, in addition to the transverse exchange
terms, in order to make the Heisenberg model accessible to the expansion about the
Ising model. The Heisenberg± Ising model for S ˆ 1 exhibits a phase transition
before the Heisenberg model is reached; the latter lies in the `Haldane phase’, in
which the spin-chain exhibits short-range magnetic order. In order to estimate the
magnon spectrum for the S ˆ 1 Heisenberg chain it is necessary to somehow bypass
that phase transition. The method used in that paper was to add a staggered ® eldP

i… ¡ †
iSz

i to the Hamiltonian with coe� cient … 1 ¡ ¶ † , that is, it was added to both
H 0 and H 1, in such a way that the Heisenberg model did not have the term at all.
However, for ¶ < 1 the degeneracy of the NeÂ el states was broken, and the transition
between the Ising phase and the Haldane phase was avoided.

Recently, there has been much interest in Heisenberg models on lattices with
larger-than-minimal unit cells. This interest has been spurred by the recognition that
the magnetic properties of various compounds ought to be well represented by such
models. Such lattices include s̀pin ladders’ (comprising two or more chains) ,
`bilayers’ and various `CAVO’ lattices (after the compound CaV4O9 which it is
supposed to represent; the reason for the plural is that there have been several
proposals regarding the relative strength of the various exchange interactions) . Most
of the systems which have motivated the calculations are actually magnetically
disordered down to anomalously low temperatures, so expansions about the Ising
model serve mainly to locate the domains of stability of the NeÂ el-ordered phases in
the models. Ising expansions for ground state and excited state properties for the
spins ladders were carried out by Oitmaa et al. [44], and for one class of CAVO
models by Zheng et al. [45]. Another property that has been calculated for spin
ladders based on Ising expansions is the magnetization in a ® nite external ® eld [46].
Zheng [47]has carried out a comprehensive set of expansions about the Ising model
for antiferromagnetically coupled square-lattice bilayers. Bilayers are supposed to
describe the magnetic interactions in certain high-T c parent compounds (such as
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YBa2Cu3O6) well, so in that case the properties of the magnetically ordered phase
are in fact of main interest. Similar Ising expansions for S ˆ 1 bilayers were later
presented by Gelfand et al. [48].

One area that has barely been touched by series expansion methods is
inhomogeneous systems. The only real di� erence between inhomogeneous and
homogeneous systems, insofar as the cluster expansion formalism is concerned, lies
in the identi® cation of the clusters and their lattice constants. Gelfand and GloÈ ggler
[49] have presented results (which were actually generated by R. R. P. Singh) for
semi-in® nite Heisenberg± Ising chains based on Ising expansions. The quantities of
interest in this case were local susceptibilities, that is, the derivative of the local
transverse magnetizations with respect to the strength of a uniform transverse ® eld.
The series were not particularly well behaved; whether that is a general feature of
perturbation expansions in inhomogeneous systems will not become clear until more
such calculations are performed.

9.1.2. Transverse- ® eld Ising model
The transverse- ® eld Ising model is given by the family of Hamiltonians

J
X

h iji

Sz
i S

z
j ¡ h

X

i
Sx

i … 50†

in which h iji typically runs over nearest-neighbour pairs on a lattice. Note that for a
bipartite lattice, the sign of J makes no di� erence, and in fact the ferromagnetic case,
for which the Ising model always has a trivial ground state, has traditionally been of
interest. Either the Ising or the transverse- ® eld part of the model can serve as an
unperturbed Hamiltonian, and in fact most studies of this model attack it from both
ends. The interest in this model comes mostly from theoretical considerations, such
as demonstrating universality of the order± disorder transition for various lattices in
a given dimension, and demonstrating that the critical points lie in the same
universality class as the ® nite-temperature Ising transition in one dimension greater.

The earliest perturbative treatment for this class of models seems to have been
carried out by Pfeuty and Elliot [10], who constructed series for the magnetization to
third order in the transverse ® eld on the square and simple cubic lattices.

Marland [21], applying `modern’ cluster expansion techniques for the ® rst time,
constructed series for the ground state energy, magnetization, (longitudinal) suscept-
ibility, and the next two higher derivatives of the energy with respect to longitudinal
magnetic ® eld on the linear chain, square lattice, and triangular lattice. The order of
the series depended on the property and lattice, but was never less than … h2†

6. (It
should be clear by symmetry that all the properties mentioned above are even in h.)
Oitmaa et al. [50] extended the energy, magnetization, and susceptibility series and
also calculated the energy gap, on the square, triangular, and honeycomb lattices.
Zheng et al. [51] carried out the analogous calculations for simple cubic, body-
centred cubic, and face-centred cubic lattices, with most of the series coe� cients
determined to order … h2†

12 .

9.2. Non-collinear Ising models
It is easy to envisage (and there exist many examples in nature) of magnetic order

in which the net magnetizations on various sublattices are not collinear with each
other. Since Ising expansions have proven extremely reliable in estimating the e� ects
of quantum ¯ uctuations on Heisenberg models which exhibit NeÂ el order, as
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discussed in section 10, one might imagine that expansions about Hamiltonians
which trivially exhibit a desired non-collinear spin ordering might be be similarly
useful.

This type of calculation has been carried out by Singh and Huse [52] for the
nearest-neighbour triangular and kagomeÂ lattice antiferromagnets. Unperturbed
Hamiltonians were constructed which exhibited two degenerate ground states with
three-sublattice order. Expansions in the t̀ransverse’ exchange components (every-
thing in the Heisenberg model that was not in H 0) were constructed for ground state
properties (notably the sublattice magnetization), the analysis of which suggested
that the kagomeÂ antiferromagnet is not magnetically ordered while the triangular
antiferromagnet is signi® cantly less ordered than implied by spin-wave theory. The
former conclusion is consistent with other studies, but the latter conclusion is not
consistent with the best ® nite-size calculations [53, 54].

9.3. L arge-® eld models
A Hamiltonian which includes only a uniform magnetic ® eld,

P
i Sz

i , can serve as
the unperturbed Hamiltonian for a `high-temperature type’ expansion. This ap-
proach has been used in calculations for the transverse- ® eld Ising model, approach-
ing the critical point from the disordered side.

In addition to papers mentioned in the subsection on Ising expansions [10, 51],
calculations are also presented in papers by Hamer and Irving [26], Hamer and
Guttman [55], and He et al. [25]. In each case the ground state energy, energy gap,
and transverse susceptibility were calculated for square and triangular lattice models;
in later papers the series were generated to higher order. The last paper is noteworthy
for including a very nice description of the cluster expansion method.

Kadano� and Kohmoto [19]used the ground-state energy of the one dimensional
transverse- ® eld model as a test of their particular cluster expansion formalism.

9.4. Dimer and plaquette models
A pair of spins with the same value of S , when coupled antiferromagnetically, has

a non-degenerate ground state. Thus Hamiltonians consisting of isolated `dimers’
can serve as bases for high-temperature type expansions. Likewise, if four S ˆ 1=2
spins are coupled antiferromagnetically in the form of a square, with arbitrary
couplings across the diagonals, the ground state is non-degenerate except for special
ratios of the s̀ide’ to `diagonal’ couplings; these `plaquettes’ can also serve as the
bases for expansions. The perturbing Hamiltonian in either case couples the
originally disconnected spins. Unlike any of the expansions discussed in preceding
subsections, the dimer and plaquette expansions can have rotationally invariant (in
spin space) interactions for all values of the perturbation.

The ® rst dimer expansion was carried out by Harris [11] for the alternating
Heisenberg chain. As mentioned in section 3, this work was noteworthy in that an
expansion for the entire elementary excitation spectrum was constructed. Some of
the ® rst dimer expansions done to high order, by cluster expansion methods, were
reported by Singh et al. [27]. The calculations were of ground state correlations and
the antiferromagnetic susceptibility, for three di� erent lattice geometriesÐ the chain,
and two distinct dimer coverings of the square lattice (in which the remaining
nearest-neighbour bonds de® ned the perturbation). Shortly thereafter, dimer expan-
sions of ground state correlations and T ˆ 0 susceptibilities were applied to the
square-lattice Heisenberg model with further neighbour couplings [56, 57]. Dimer
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expansions for nearest-neighbour square-lattice Heisenberg models with spatially
anisotropic couplings (again, for ground state correlations and susceptibilities) were
presented by Aƒ eck et al. [41].

Several years prior to the calculations by Singh et al. [27], Kohmoto et al. [58]
carried out detailed analysis of a one-dimensional quantum Hamiltonian version of
the Ashkin± Teller model, using high-order perturbation expansions constructed
following the formalism of Kadano� and Kohmoto [19]. As noted in their paper,
the quantum Hamiltonian is equivalent to a dimerized XXZ chain, that is, the
interaction is not rotationally invariant but instead has the more general form
Sx

i Sx
j ‡ Sy

i Sy
j ‡ ®Sz

i S
z
j . For any value of ® the two-site problem remains exactly

solvable and for ® > ¡ 1 the ground state is non-degenerate and a dimer expansion is
possible. The calculation by Kohmoto et al. was in fact an expansion about the
dimer limit. This work was extended more recently by Yamanaka et al. to examine
the case of ferromagnetic interdimer coupling in the XXZ chain [59], and Heisenberg
interdimer couplings (both ferro- and antiferromagnetic) between XXZ dimers in a
chain [60]. All of these calculations were for the ground state energy and various
derivatives of the ground state energy with respect to parameters in the Hamiltonian.

Dimer expansions have been constructed for Heisenberg chains with second
neighbour interactions (all of which are included in H 1, in addition to half of the
nearest neighbour couplings) , as discussed brie¯ y by Singh and Gelfand [61].
Another variation on dimer expansion for Heisenberg models is possible when
S 1. In that case, the Hamiltonian can contain terms beyond the `bilinear’
coupling S i· S j , because higher powers (such as … S i · S j †

2, the `biquadratic’ inter-
action) are independent operators, and they can be put in H 0 as well as H 1.
Expansions for ground state correlations and susceptibilities involving such Hamil-
tonians for S ˆ 1 chains have been carried out by Singh and Gelfand [42].

Dimer expansions have been applied to models of coupled Heisenberg chains and
planes. In these cases, H 0 consists of the interchain or interplane coupling, with all of
the intra-chain± plane interactions put into H 1. For coupled planes, ground state
correlations and susceptibilities were ® rst treated by Hida [62]; these calculations
were extended to higher order and expanded to include the excitation spectrum by
Gelfand [63] and Zheng [47]. Matsushita et al. [64] have considered a more general
class of bilayer models, in which the interplane couplings were allowed to be di� erent
(even of di� erent sign) in the two planes. These calculations were restricted to the
excitation spectrum. Another more general class of Heisenberg bilayers was
considered by Gelfand et al. [48]. They carried out dimer expansions for the energy
gap and antiferromagnetic susceptibility for models with S ˆ 1 up to S ˆ 4, in order
to see how the critical inter/intra-layer coupling ratio varied with S.

For two-chain ladders, dimer expansions to eighth order for the triplet excitation
spectrum have been constructed by Oitmaa et al. [44].

Recently, Barnes et al. [65] have constructed dimer expansions for the triplet
spectrum (and also spectral weights and bound state energies!) for the alternating
Heisenberg chain. Some of the low-order results were obtained using perturbation
theory (standard cumulant expansion formalism). However, many of the series
coe� cients were actually determined by means of `multi-precision’ (in e� ect, exact)
® nite-size calculations. Given values of, say, the ground state energy per site, for
various values of the perturbation parameter, it is clear that one can in principle
extract the coe� cients of the polynomial which gives the analytic connection
between perturbation parameter and energy. In practice the reconstruction of the
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coe� cients is a numerically unstable with ® nite-precision arithmetic, but if the
energies are known exactly and the coe� cients are known to be rational fractions
with relatively small denominators one can carry out the procedure. A ® nite system
with periodic boundary conditions has the same coe� cients as the in® nite chain up
to some order determined by the system size, so Barnes et al. were limited by the size
of system they could diagonalize using multi-precision arithmetic. We should note
that this approach should work for any one-dimensional system, but does not
generalize (in any obvious way) to higher-dimensional systems. It also strikes us as
being computationally less e� cient than perturbation theory. However, these
considerations in no way detract from the many nice results Barnes et al. have
obtained.

Plaquette expansions were ® rst motivated by the suggestion of Ueda et al. [18]
that the spin Hamiltonian for CaV4O9 might best be thought of in terms of
plaquettes. Those authors also carried out, analytically, a second-order plaquette
expansion for the ground state energy and triplet gap. Higher-order plaquette
expansions in the context of CAVO Heisenberg models were carried out by
Gelfand et al. [66] and Zheng et al. [45]. Note that dimer expansions can also be
applied to the CAVO Hamiltonian. In addition to the works noted above [18, 45], a
dimer expansion for the ground state energy was constructed by Meshkov and
Foerster [67].

The attempt to qualitatively determine the appropriate spin Hamiltonian for
CaV4O9 did not end with the work of Ueda et al. An ab initio calculation by
Pickett [68] leads to a rather di� erent class of HamiltoniansÐ which remarkably
enough are best described in terms of interacting plaquettes, but di� erent plaquettes
than those proposed by Ueda et al. A neutron scattering study [69] seems more
consistent with Pickett’s model just on the basis of lowest-order perturbation theory,
and the experimental spectrum has been analysed in light of third-order plaquette
expansions by Fukumoto and Oguchi [70]. (We should note that some features of the
spectral weight data seem di� cult to explain by means of the Hamiltonian that
works well for the spectrum.)

9.5. Strong-coupling symmetric Kondo lattices
We now turn our attention to models which cannot be described solely in terms

of localized spins. It is obvious that many of the most important models in
condensed matter physics are models of fermion rather than spin dynamics.
Unfortunately, at least from the standpoint of convergent perturbation expansions,
the familiar exactly solvable models such as free fermions on a lattice (i.e. t̀ight-
binding models’ ) are gapless in the thermodynamic limit for generic parameter
values.

However, there are some signi® cant exceptions. Consider, for example, the
symmetric Kondo lattice model. Each lattice site is associated with a S ˆ 1=2 spin
and a single orbital. The spin is exchange-coupled to the spin density associated with
the orbital, that is, one term in the Hamiltonian has the form

J
X

i

S i· … cy

i¬¼¬ ci † ; … 51†

where cy

i¬ creates an electron with spin ¬ on site i and ¼ represents the Pauli matrices.
The factor J is the Kondo coupling strength. We will apply the Einstein summation
convention to the spin indices. Another term in the Hamiltonian is the electronic
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kinetic energy. In the narrow-band limit this is well represented by nearest-neighbour
`hopping’

¡ t
X

h iji
cy

i cj ‡ cy

j ci : … 52†

Finally, there is a chemical potential for the electrons, but in the symmetric model
this is taken to be zero.

Associated with each site there are 8 possible states (two states for the ® xed spins
and four states for the orbital) , and for J > 0 a single site has a unique ground state.
This state has exactly one electron in the orbital, which is singlet-paired with the
localized spin. Thus one can construct convergent perturbation expansions in the
ratio t=J. These calculations are somewhat more challenging to carry out than the
corresponding calculations for spin systems because one needs to take into account
fermion anticommutation in order to correctly determine the sign of kinetic energy
matrix elements.

Expansions for ground state correlations and susceptibilities have carried out by
Shi et al. [71]for linear, square, and simple-cubic lattices. For the latter two lattices,
these were used to establish phase boundaries between magnetically disordered and
ordered phases. Note that these symmetric Kondo lattice models are always
insulators, that is, there is always a gap to states which have more or less than
one electron per orbital.

9.6. Hubbard and t± J models at half-® lling
The one-band Hubbard model and the t± J model have been subject to an

extraordinary degree of theoretical analysis over the past decade, thanks to the
discovery of high-temperature superconductivity in the cuprate perovskites and the
theoretical proposals (starting with Anderson) that such models embody the relevant
physics. At half-® lling, where the t± J model reduces to the Heisenberg model and so
does the Hubbard model, at least in the limit of large on-site repulsion U, it is
possible to apply convergent perturbation expansions and obtain interesting results.
The t̀rick’ which makes that possible is to break spin± rotational symmetry in
intermediate stages of the calculation.

For the t± J model at half-® lling, one can take the Ising model for H 0, and then
put the transverse exchange as well as the kinetic energy into the perturbation. Of
course, precisely at half-® lling this is nothing more than an Ising expansion for the
Heisenberg model. However, states with one electron short of half-® lling can be
treated as a manifold of discrete excitations, and so can multi-hole bound states. This
program has been carried out using cumulant (rather than cluster) expansion
methods by PrelovsÆek et al. [14].

For the Hubbard model at half-® lling a somewhat more radical strategy is
necessary. In the absence of kinetic energy the ground state is 2N-fold degenerate.
The degeneracy must be broken before any convergent expansion can be carried out.
Shi and Singh [72, 73] approached this problem by putting the antiferromagnetic
Ising model (in addition to the on-site interaction and the chemical potential term) in
H 0, and including the opposite term in H 1. When the coe� cient of the perturbing
term reaches 1, one is left just with the Hubbard model. They were then able to
calculate many characteristics of the antiferromagnetic half-® lled Hubbard model as
a function of the U=t ratio, such as the sublattice magnetization, transverse
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susceptibility, and spin sti� ness. Both large U=t (Heisenberg model limit) and small
U=t (spin-density-wave limit) were accessible using this approach.

9.7. Boson± Hubbard models at integer ® lling
Another model of current interest that involves `mobile’ degrees of freedom is the

boson Hubbard model. At integer ® llings there is a unique ground state when the
coe� cient of the kinetic energy term vanishes, with a gap (of order U) to other states
which do not have equal occupancy at every site. Thus one can perturb in the kinetic
energy. A low-order calculation, most notably for the gap to excited states with
particle numbers that di� er by one from half-® lling (which vanishes at the
conductor± insulator transition) along these lines has been carried out by Freericks
and Monien [15]

9.8. Other models from condensed matter physics
There are a few other models for which convergent perturbation expansions have

been constructed which (i) were motivated by problems in condensed matter physics
but (ii) are not readily described in terms of quantum spins, bosons, or fermions.
Typically the T ˆ 0 properties of these models are known (or expected) to be closely
related to the ® nite-temperature properties of some model in one spatial dimension
higher. One example is the relationship between the d-dimensionalT ˆ 0 transverse-
® eld Ising model and the … d ‡ 1† -dimensional ® nite-temperature Ising model.

A quantum Hamiltonian version of the 3-state Potts model has been examined by
high-order perturbation expansions in two dimensions by Hamer et al. [74, 75]; and,
later, in three dimensions (on various lattices) [76]. In fact, this model was subjected
to both high-temperature type and low-temperature type expansions. Quantities
studied include the ground state energy, energy gap, magnetization, and suscept-
ibility. In three dimensions, these models undergo ® rst-order order± disorder transi-
tions, so it was essential to have both types of series in order to obtain physically
useful results.

Earlier work, not using cluster expansion methods, included calculations of
properties including gaps for d ˆ 1 quantum versions of the ANNNI (axial next-
nearest neighbour Ising) model [23] and chiral clock model [22].

9.9. Models from ® eld theory
Here we will rather quickly describe a variety of strong-coupling calculations

from the ® eld-theory literature; let us emphasize again that the following compila-
tion is by no means complete, but may serve as a useful entry-point to the literature.

One class of models which have been extensively studied by means of high-order
convergent expansions is the quantum rotor models. The unperturbed Hamiltonian
associated with the O… n† rotor model is of the form

X

i

L
2
i ; … 53†

where L is the n-dimensional angular momentum operator. In the unperturbed
ground state, each site has angular momentum zero. Coupling between the angular
momenta takes place via a Heisenberg-type coupling, ni · nj , where the n are angular
orientation operators.

Expansions for n ˆ 2, 3, and 4 quantum rotor models were carried out for one-
dimensional systems by Hamer et al. [12]. A higher order expansion for the energy
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gap for the n ˆ 2 model was carried out by Hornby and Barber [24], while Hamer
and Guttman [55] considered n ˆ 2 and 3 in both one and two dimensions.

Other models which have been studied by strong-coupling expansions include a
range of pure gauge theories. Let us just note the gauge groups: ZN [77, 78], U… 1† [77,
79], SU… 2† [79], SU… 3† [80]. At least one gauge theory including fermions, the
massive Schwinger model [81], has also been the subject of strong-coupling
expansions.

10. An illustrative example: the square lattice Heisenberg antiferromagnet

To illustrate the power of the perturbation expansions discussed here and to
compare them with other numerical methods, we discuss the case of spin-half square-
lattice Heisenberg antiferromagnets. Consider ® rst the nearest-neighbour model
de® ned by the Hamiltonian

H ˆ
X

h i; ji

S i· S j : … 54†

Here S i represents a spin-half operator at site i and the sum runs over all nearest
neighbour pairs on the lattice. This model has been studied extensively by numerical
methods over the past decade or so, especially because of its relevance to the cuprate
high-Tc materials. The use of Ising expansions for this model go back to the work of
Davis in 1960 [5]. However, it became a controlled numerical method only after
Huse pointed out how the singular behaviour could be accommodated in the series
extrapolations [82]. Furthermore, the development of cluster expansion methods has
made it possible to calculate long series by fully automated computer programs.

Ising expansions have been developed for this model for a number of di� erent
quantities including:

(i) basic ground state properties, such as ground state energy and sublattice
magnetization [83, 84];

(ii) static response functions, such as uniform susceptibility and spin-sti� ness
constant [36, 83± 85];

(iii) equal time spin± spin correlation functions and the elementary excitation
spectrum in the single mode approximation [86];

(iv) complete spin-wave excitation spectrum [87];
(v) wave vector dependent spectral weights associated with the spin-wave

spectrum [87];
(vi) frequency moments for the Raman response functions [88].

Although many of these quantities were ® rst obtained by spin-wave theory, its
reliability was not a priori obvious for S ˆ 1=2 antiferromagnets in two dimensions.
To our knowledge, all these quantities, except for ground-state energy and sublattice
magnetization, were ® rst calculated in a controlled numerical way by the Ising
expansion. As discussed ® rst by Huse, the gapless spin waves lead to singular
corrections to the thermodynamic quantities as the Heisenberg model is approached
from the Ising model. However, the power laws associated with the singularities are
entirely determined by non-interacting spin-wave theory. To be more explicit, let our
expansion parameter be ¶ ˆ Jxy=JI , with the Heisenberg model corresponding to
¶ ˆ 1. Then quantities like the sublattice magnetization will have singularities of the
form,
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M ˆ M0 ‡ A… 1 ¡ ¶
2

†
1=2

:

This implies that the Nth partial sum of the series will converge as a power of 1=N.
For the sublattice magnetization the partial sums behave as [83]

SN ˆ M0 ‡ 1=N1=2
:

Thus the magnetization for the Heisenberg model M0 is readily determined from a
plot of SN as a function of N¡ 1=2. Alternatively, properties such as M0 can also be
determined by changing to a new variable such that the leading singularity is
removed, and carrying out PadeÂ extrapolations [85].

The numerical values generated by the analysis of Ising expansions have since
been con® rmed by other methods, and there are no serious discrepancies. Recent
quantum Monte Carlo simulations using cluster algorithms [89], the stochastic series
expansion (SSE) method [90], and Green’s function Monte Carlo methods [91, 92]
have produced results of comparable accuracy to the best series expansion results
[36, 84]. Table 1 gives a listing of some of the basic quantities calculated by di� erent
numerical methods along with the uncertainties quoted by these respective authors.
The small di� erences imply that there are systematic errors in various methods but it
is not possible to say which results are the most accurate.

Perhaps the clearest advantage of the series expansion method is in dealing with
systems with frustration, which lead to minus signs in quantum Monte Carlo
simulations. The other advantage may be that one can get reasonably accurate
results with modest computer resources (or perhaps even without using a com-
puterÐ note that 4th order Ising expansions for the ground state energy and
magnetization can be done by hand and when properly analysed give an accuracy
of a few percent). This would clearly not be possible for the Monte Carlo methods,
although this is perhaps not a serious consideration with the availability of
signi® cant computing power on one’s desktop in recent years.

Let us now consider the square-lattice Heisenberg model with nearest and second
neighbour antiferromagnetic interactions, also known as the J1 ± J2 model. This
model has the usual antiferromagnetic order at small J2. For large J2, a collinear 4-
sublattice order, in which neighbouring spins align ferromagnetically along one of
the axes of the square-lattice and antiferromagnetically along the other axis is known
to be promoted by quantum ¯ uctuationsÐ an order-by-disorder phenomenon [93].
In our view (though others may disagree) , by far the most reliable numerical results
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Table 1. Numerical results for the S ˆ 1=2 square-lattice Heisenberg model. E0 is the ground
state energy, M the sublattice magnetization, À ? the uniform perpendicular susceptibil-
ity, »s the spin-stiffness constant and c the spin-wave velocity. QMC stands for quantum
Monte Carlo, GFMC for Green’s function Monte Carlo and SSE for stochastic series
expansions.

Quantity Ising expansions Cluster QMC GFMC SSE

E0 7 0.6693(1) 7 0.66934(3) 7 0.669437(5)
M 0.307(1) 0.3084(2) 0.3075(35) 0.3070(3)
À? 0.0659(10) 0.0669(7) 0.0625(9)
»s 0.182(5) 0.185(2) 0.175(2)
c 1.655(12) 1.68(1) 1.55(4) 1.673(7)
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for intermediate ratios of the couplings have come from series expansions. Gelfand
et al. [56]and later Oitmaa and Zheng [34], using Ising and dimer expansions, have
shown that there is an intermediate phase where there is a ® nite energy gap and no
magnetic order. This phase exists approximately in the parameter range
0:4 < J2=J1 < 0:6. The nature of this phase is still not fully understood, although
it most likely has broken translational symmetry [94]. For these frustrated models,
the only other numerical method which has been used extensively is exact
diagonalization [95].

Another two dimensional Heisenberg model which has received considerable
attention recently is the 1

5th depleted square-lattice relevant to the material CaV4O9

[18]. The lattice is shown in ® gure 8. From the geometry, one can identify two
distinct nearest neighbour couplings and two distinct second neighbour couplings.
An appropriate Heisenberg Hamiltonian can be written as:

H ˆ J1

X

… i; j†

S i · S j ‡ J 0

1

X

… i;k†

S i· S k

‡ J2

X

… i;l†

S i · S l ‡ J 0

2

X

… i;m †

S i · Sm ; … 55†

where the sums run over nearest-neighbour bonds within plaquettes (J1), nearest-
neighbour bonds between plaquettes (J 0

1 ), second-neighbour bonds within plaquettes
(J2), and second-neighbour bonds between plaquettes (J 0

2 ). Observe that this
Hamiltonian has the property that every spin is equivalent, just as every vanadium
atom in CaV4O9 is equivalent.

For the nearest neighbour model, the most extensive calculation has been done
by quantum Monte Carlo simulations [96]. Results for the phase diagram and energy
gap obtained from series expansions [45, 66]are in close agreement with those of the
Monte Carlo simulations. However, for frustrated models, series expansions remains
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Figure 8. The one-® fth depleted square lattice relevant to the material CaV4O9.
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the method of choice, although the density matrix renormalization group method
has also been used successfully for this model [97].

11. Open problems

In this section we will discuss three methodological open problems for cluster
expansion calculations: how to treat problems with quenched disorder, how to treat
`multi-particle’ excited states, and how to carry out expansions when the ground
state of the unperturbed Hamiltonian is highly degenerate.

11.1. Quenched disorder
It is clear from the multivariable expansions discussed in section 4 that the cluster

expansion method works even when each term in H 1 has a di� erent coe� cient. Thus
it is possible to carry out an expansion for any realization of a disordered system,
when the disorder is associated with the perturbation. If the disorder is discrete, such
as bimodal, then the ® nite number of bond con® gurations of a given cluster (that is,
the set of possible cluster Hamiltonians) can all be enumerated. Thus one can carry
out disorder-averaged calculations for static ground state properties, by giving each
possible cluster Hamiltonian, say all 2m of them for bimodal disorder and a cluster
with m terms of H 1, the appropriate weight. Note that these calculations require
signi® cantly more e� ort than the analogous calculations for uniform systems, since
each graph of the uniform system corresponds to many graphs of the disordered
system. Calculations of this type have been carried out for the random transverse
Ising chain [98]. But further di� culty arises in the analysis of such series. Consider,
for example, what is known about the random transverse Ising chain [99]by nearly
rigorous real-space renormalization group arguments. They have very strong
Gri� th’s singularities; their properties have very broad distributions; and they
may be gapless even when their correlation lengths are ® nite. It is not obvious
how series analysis methods can accommodate these physical features.

(It is also not obvious how to develop cluster expansions when there is
continuous disorder in H 0. This would be required for expansions around gapless
localized limits, such as a Bose glass [100]. We suspect that the cluster expansion
formalism, as developed here, is just not applicable in this case.)

Looking at the excitation spectra poses further problems. Disorder-averaging of
the e� ective Hamiltonian discussed in section 6 is tantamount to an e� ective medium
approximation and does not re¯ ect the true excitation spectra. One way around
some of these di� culties is to consider a ® nite but large system with a given
realization of disorder, and calculate the series expansions for all states of the
system and construct the density of states and other relevant quantities. Such
calculations have not been attempted so far.

11.2. Multi-particle excited states
Questions associated with two- (or more) particle excitations pose interesting

challenges for cluster expansion methods. A useful example to consider is the
Heisenberg ferromagnet [101]. In that case, the single particle excitations can be
obtained exactly. For the two-particle excitations, one needs to solve an integral
equation to ® nd the spectrum and lifetimes. For the general case of interest to us,
with quantum ¯ uctuations in the ground state, it seems that we should in principle be
able to write down the integral equation for the two-particle excitations, order by
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order in perturbation theory. In a recent paper Damle and Sachdev [102] have
calculated the S matrix for the spin-ladder model in the strong coupling expansion to
second order. It would be useful to develop the cluster `machinery’ so that a wide
variety of such calculations could be done by (largely) automated computer
programs.

However, even in the case of multiparticle bound states we have not been able to
overcome some fundamental conceptual di� culties which arise for certain models.
For the Ising model on the square lattice (or any bipartite lattice in d > 1) there are
two-particle bound states consisting of adjacent ¯ ipped spins in an ordered back-
ground. When transverse exchange is included perturbatively one anticipates that
these excitations develop dispersion but retain their character as discrete excitations.
For the ferromagnet, there appears to be no di� culty encountered in constructing a
perturbation expansion for these excitations, because by conservation of total Sz the
bound state cannot move from one cluster to another disconnected cluster under the
action of the perturbation. However, for the antiferromagnet, the action of each
term of the transverse exchange on the NeÂ el state is to create a two-particle bound
state. Consequently, the formalism for cluster expansions appears to be inapplicable
in this case, since the excitations can jump from one component to another of a
disconnected graph. What is not clear to us is whether this implies that a series
expansion in integer powers of the transverse exchange is not possible, or that the
cluster expansion machinery cannot be used, or that we just need to think more
clearly to derive a cluster expansion method for this problem.

11.3. Massive ground-state degeneracy in the unperturbed Hamiltonian
There are many natural candidates for perturbation theory where the ground

state of the unperturbed Hamiltonian is highly degenerate. Examples of such
problems are the large-U (or, better, small-t) limit of the Hubbard model, or the
strong `rung’ coupling limit of the 3-chain Heisenberg model. The standard way of
treating such problems is degenerate perturbation theory, which produces an
e� ective Hamiltonian within the unperturbed ground-state manifold that is then
used for further calculations. Thus the Hubbard model reduces to the Heisenberg or
t± J model; and the 3-chain ladder reduces to the single Heisenberg chain problem.
This obviously works well for very strong coupling. Extending this scheme beyond
leading order is quite cumbersome [103], and has rarely been used to generate
numerical results. One way around this di� culty is to develop strong coupling
expansions at ® nite temperatures. The methodology for carrying out such high-order
expansions on the computer has recently been developed [104] and should prove
useful for the odd-chain Heisenberg ladder.

12. Conclusions

In this review we have presented details of the T ˆ 0 series expansion method for
quantum statistical models on a lattice. The method consists of a straightforward
high-order perturbation theory in the coupling constants, followed by use of series
extrapolation methods borrowed from the study of classical critical phenomena.
This article focuses entirely on calculations of series coe� cients. We have tried to
present su� ciently detailed descriptions of the algorithms so that it would possible
for someone new to the ® eld to set up working computer programs within a
reasonable period of time.
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The basic structure of the method discussed here is very simple and applies to
many di� erent problems. The perturbative problem on the in® nite lattice is broken
up into many small ® nite cluster problems. Generating exact series coe� cients for
ground and excited state properties of the thermodynamic systems is reduced to an
enumeration of clusters on the lattice and perturbation theory on those ® nite
clusters. We discuss how these clusters can be generated, and the perturbation
theory can be carried out, by means of fully automated computer programs.

The class of problems where these methods apply is limited in some sense,
because one needs a simple starting Hamiltonian to expand around. On the other
hand, the list of problems where these methods can provide a quick, and in many
cases the quantitatively most accurate, answers is growing everyday. For example,
many new materials have been recently discovered which exhibit spin-gap phenom-
ena. That is, thermodynamic quantities such as speci® c heat and susceptibility
exhibit activated behaviour at low temperatures. Many of these materials can be
thought of as weakly coupled spin-clusters, where the spins within each cluster
interact much more strongly than any pair of spins in di� erent clusters. The series
expansion method is ideal for studying such systems. So far, calculations have been
mostly limited to clusters of two and four S ˆ 1=2 spins; but, with the growth in
computer power, much larger clusters or higher spin clusters are also feasible. As the
cluster sizes grow, even uniform systems are likely to show improved convergence in
low orders.

Applications of these methods beyond the problems involving only spin degrees
of freedom have been limited so far. There have been calculations of Hubbard,
Kondo lattice, Bose± Hubbard etc. models, but all around the insulating phases.
Extension of these methods to metallic phases and to quenched random systems are
some of the most important challenges remaining in the formal development of series
expansion methods. We hope our review attracts more attention to these problems,
and encourages more use of these most traditional calculational tools.
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